Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cogn Psychol ; 146: 101598, 2023 11.
Article in English | MEDLINE | ID: mdl-37716109

ABSTRACT

Trial-to-trial effects have been found in a number of studies, indicating that processing a stimulus influences responses in subsequent trials. A special case are priming effects which have been modelled successfully with error-driven learning (Marsolek, 2008), implying that participants are continuously learning during experiments. This study investigates whether trial-to-trial learning can be detected in an unprimed lexical decision experiment. We used the Discriminative Lexicon Model (DLM; Baayen et al., 2019), a model of the mental lexicon with meaning representations from distributional semantics, which models error-driven incremental learning with the Widrow-Hoff rule. We used data from the British Lexicon Project (BLP; Keuleers et al., 2012) and simulated the lexical decision experiment with the DLM on a trial-by-trial basis for each subject individually. Then, reaction times were predicted with Generalized Additive Models (GAMs), using measures derived from the DLM simulations as predictors. We extracted measures from two simulations per subject (one with learning updates between trials and one without), and used them as input to two GAMs. Learning-based models showed better model fit than the non-learning ones for the majority of subjects. Our measures also provide insights into lexical processing and individual differences. This demonstrates the potential of the DLM to model behavioural data and leads to the conclusion that trial-to-trial learning can indeed be detected in unprimed lexical decision. Our results support the possibility that our lexical knowledge is subject to continuous changes.


Subject(s)
Discrimination Learning , Semantics , Humans , Learning , Reaction Time/physiology , Individuality , Decision Making
2.
Front Hum Neurosci ; 17: 1242720, 2023.
Article in English | MEDLINE | ID: mdl-38259337

ABSTRACT

Word frequency is a strong predictor in most lexical processing tasks. Thus, any model of word recognition needs to account for how word frequency effects arise. The Discriminative Lexicon Model (DLM) models lexical processing with mappings between words' forms and their meanings. Comprehension and production are modeled via linear mappings between the two domains. So far, the mappings within the model can either be obtained incrementally via error-driven learning, a computationally expensive process able to capture frequency effects, or in an efficient, but frequency-agnostic solution modeling the theoretical endstate of learning (EL) where all words are learned optimally. In the present study we show how an efficient, yet frequency-informed mapping between form and meaning can be obtained (Frequency-informed learning; FIL). We find that FIL well approximates an incremental solution while being computationally much cheaper. FIL shows a relatively low type- and high token-accuracy, demonstrating that the model is able to process most word tokens encountered by speakers in daily life correctly. We use FIL to model reaction times in the Dutch Lexicon Project by means of a Gaussian Location Scale Model and find that FIL predicts well the S-shaped relationship between frequency and the mean of reaction times but underestimates the variance of reaction times for low frequency words. FIL is also better able to account for priming effects in an auditory lexical decision task in Mandarin Chinese, compared to EL. Finally, we used ordered data from CHILDES to compare mappings obtained with FIL and incremental learning. We show that the mappings are highly correlated, but that with FIL some nuances based on word ordering effects are lost. Our results show how frequency effects in a learning model can be simulated efficiently, and raise questions about how to best account for low-frequency words in cognitive models.

3.
Front Psychol ; 12: 720713, 2021.
Article in English | MEDLINE | ID: mdl-34867600

ABSTRACT

This study addresses a series of methodological questions that arise when modeling inflectional morphology with Linear Discriminative Learning. Taking the semi-productive German noun system as example, we illustrate how decisions made about the representation of form and meaning influence model performance. We clarify that for modeling frequency effects in learning, it is essential to make use of incremental learning rather than the end-state of learning. We also discuss how the model can be set up to approximate the learning of inflected words in context. In addition, we illustrate how in this approach the wug task can be modeled. The model provides an excellent memory for known words, but appropriately shows more limited performance for unseen data, in line with the semi-productivity of German noun inflection and generalization performance of native German speakers.

4.
Behav Res Methods ; 53(3): 945-976, 2021 06.
Article in English | MEDLINE | ID: mdl-32377973

ABSTRACT

Pseudowords have long served as key tools in psycholinguistic investigations of the lexicon. A common assumption underlying the use of pseudowords is that they are devoid of meaning: Comparing words and pseudowords may then shed light on how meaningful linguistic elements are processed differently from meaningless sound strings. However, pseudowords may in fact carry meaning. On the basis of a computational model of lexical processing, linear discriminative learning (LDL Baayen et al., Complexity, 2019, 1-39, 2019), we compute numeric vectors representing the semantics of pseudowords. We demonstrate that quantitative measures gauging the semantic neighborhoods of pseudowords predict reaction times in the Massive Auditory Lexical Decision (MALD) database (Tucker et al., 2018). We also show that the model successfully predicts the acoustic durations of pseudowords. Importantly, model predictions hinge on the hypothesis that the mechanisms underlying speech production and comprehension interact. Thus, pseudowords emerge as an outstanding tool for gauging the resonance between production and comprehension. Many pseudowords in the MALD database contain inflectional suffixes. Unlike many contemporary models, LDL captures the semantic commonalities of forms sharing inflectional exponents without using the linguistic construct of morphemes. We discuss methodological and theoretical implications for models of lexical processing and morphological theory. The results of this study, complementing those on real words reported in Baayen et al., (Complexity, 2019, 1-39, 2019), thus provide further evidence for the usefulness of LDL both as a cognitive model of the mental lexicon, and as a tool for generating new quantitative measures that are predictive for human lexical processing.


Subject(s)
Comprehension , Discrimination Learning , Humans , Psycholinguistics , Semantics , Speech
5.
J Exp Psychol Learn Mem Cogn ; 46(4): 621-637, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31318232

ABSTRACT

Using computational simulations, this work demonstrates that it is possible to learn a systematic relation between words' sound and their meanings. The sound-meaning relation was learned from a corpus of phonologically transcribed child-directed speech by using the linear discriminative learning (LDL) framework (Baayen, Chuang, Shafaei-Bajestan, & Blevins, 2019), which implements linear mappings between words' form vectors and semantic vectors. Presented with the form vectors of 16 nonwords, taken from a study on word learning (Fitneva, Christiansen, & Monaghan, 2009), the network generated the estimated semantic vectors of the nonwords. As half of these nonwords were created to phonologically resemble English nouns and the other half were phonologically similar to English verbs, we assessed whether the estimated semantic vectors for these nonwords reflect this word category difference. In 7 different simulations, linear discriminant analysis (LDA) successfully discriminated between noun-like nonwords and verb-like nonwords, based on their semantic relation to the words in the lexicon. Furthermore, how well LDA categorized a nonword correlated well with a phonological typicality measure (i.e., the degree of its form being noun-like or verb-like) and with children's performance in an entity/action discrimination task. On the one hand, the results suggest that children can infer the implicit meaning of a word directly from its sound. On the other hand, this study shows that nonwords do land in semantic space, such that children can capitalize on their semantic relations with other elements in the lexicon to decide whether a nonword is more likely to denote an entity or an action. (PsycInfo Database Record (c) 2020 APA, all rights reserved).


Subject(s)
Discrimination Learning , Models, Theoretical , Psycholinguistics , Humans , Phonetics , Semantics
SELECTION OF CITATIONS
SEARCH DETAIL
...