Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 8(8): e72301, 2013.
Article in English | MEDLINE | ID: mdl-23977276

ABSTRACT

Progressive aggregation of protein Tau into oligomers and fibrils correlates with cognitive decline and synaptic dysfunction, leading to neurodegeneration in vulnerable brain regions in Alzheimer's disease. The unmet need of effective therapy for Alzheimer's disease, combined with problematic pharmacological approaches, led the field to explore immunotherapy, first against amyloid peptides and recently against protein Tau. Here we adapted the liposome-based amyloid vaccine that proved safe and efficacious, and incorporated a synthetic phosphorylated peptide to mimic the important phospho-epitope of protein Tau at residues pS396/pS404. We demonstrate that the liposome-based vaccine elicited, rapidly and robustly, specific antisera in wild-type mice and in Tau.P301L mice. Long-term vaccination proved to be safe, because it improved the clinical condition and reduced indices of tauopathy in the brain of the Tau.P301L mice, while no signs of neuro-inflammation or other adverse neurological effects were observed. The data corroborate the hypothesis that liposomes carrying phosphorylated peptides of protein Tau have considerable potential as safe and effective treatment against tauopathies, including Alzheimer's disease.


Subject(s)
Alzheimer Vaccines/immunology , Antibodies, Neutralizing/blood , Peptides/immunology , Phosphoproteins/immunology , Tauopathies/drug therapy , tau Proteins/immunology , Alzheimer Vaccines/administration & dosage , Animals , Brain/drug effects , Brain/immunology , Brain/physiopathology , Disease Models, Animal , Humans , Liposomes/chemistry , Mice , Mice, Transgenic , Peptides/administration & dosage , Peptides/chemical synthesis , Phosphoproteins/administration & dosage , Phosphoproteins/chemical synthesis , Phosphorylation , Psychomotor Performance/drug effects , Tauopathies/immunology , Tauopathies/physiopathology , Treatment Outcome , Vaccination , tau Proteins/antagonists & inhibitors , tau Proteins/genetics
2.
Blood ; 121(1): 85-94, 2013 Jan 03.
Article in English | MEDLINE | ID: mdl-23144170

ABSTRACT

Immunoglobulin class switching from IgM to IgG in response to peptides is generally T cell-dependent and vaccination in T cell-deficient individuals is inefficient. We show that a vaccine consisting of a dense array of peptides on liposomes induced peptide-specific IgG responses totally independent of T-cell help. Independency was confirmed in mice lacking T cells and in mice deficient for MHC class II, CD40L, and CD28. The IgG titers were high, long-lived, and comparable with titers obtained in wild-type animals, and the antibody response was associated with germinal center formation, expression of activation-induced cytidine deaminase, and affinity maturation. The T cell-independent (TI) IgG response was strictly dependent on ligation of TLR4 receptors on B cells, and concomitant TLR4 and cognate B-cell receptor stimulation was required on a single-cell level. Surprisingly, the IgG class switch was mediated by TIR-domain-containing adapter inducing interferon-ß (TRIF), but not by MyD88. This study demonstrates that peptides can induce TI isotype switching when antigen and TLR ligand are assembled and appropriately presented directly to B lymphocytes. A TI vaccine could enable efficient prophylactic and therapeutic vaccination of patients with T-cell deficiencies and find application in diseases where induction of T-cell responses contraindicates vaccination, for example, in Alzheimer disease.


Subject(s)
Adaptor Proteins, Vesicular Transport/physiology , Amyloid beta-Peptides/immunology , B-Lymphocytes/immunology , Immunoglobulin Class Switching/immunology , Peptide Fragments/immunology , Toll-Like Receptor 4/physiology , Vaccines, Subunit/immunology , Adaptor Proteins, Vesicular Transport/deficiency , Adaptor Proteins, Vesicular Transport/genetics , Adoptive Transfer , Amino Acid Sequence , Amyloid beta-Peptides/administration & dosage , Animals , Antigen Presentation , B-Lymphocytes/metabolism , CD28 Antigens/deficiency , CD28 Antigens/immunology , CD40 Ligand/deficiency , CD40 Ligand/immunology , Germinal Center/immunology , Histocompatibility Antigens Class II/immunology , Humans , Immunoglobulin G/biosynthesis , Immunoglobulin M/biosynthesis , Lipopolysaccharide Receptors/immunology , Liposomes , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Nude , Molecular Sequence Data , Ovalbumin/administration & dosage , Ovalbumin/immunology , Peptide Fragments/administration & dosage , Receptors, Antigen, B-Cell/immunology , T-Lymphocytes/immunology , Toll-Like Receptor 4/deficiency , Toll-Like Receptor 4/genetics , Vaccination , Vaccines, Subunit/administration & dosage
3.
Proc Natl Acad Sci U S A ; 104(23): 9810-5, 2007 Jun 05.
Article in English | MEDLINE | ID: mdl-17517595

ABSTRACT

We investigated the therapeutic effects of two different versions of Abeta(1-15 (16)) liposome-based vaccines. Inoculation of APP-V717IxPS-1 (APPxPS-1) double-transgenic mice with tetra-palmitoylated amyloid 1-15 peptide (palmAbeta(1-15)), or with amyloid 1-16 peptide (PEG-Abeta(1-16)) linked to a polyethyleneglycol spacer at each end, and embedded within a liposome membrane, elicited fast immune responses with identical binding epitopes. PalmAbeta(1-15) liposomal vaccine elicited an immune response that restored the memory defect of the mice, whereas that of PEG-Abeta(1-16) had no such effect. Immunoglobulins that were generated were predominantly of the IgG class with palmAbeta(1-15), whereas those elicited by PEG-Abeta(1-16) were primarily of the IgM class. The IgG subclasses of the antibodies generated by both vaccines were mostly IgG2b indicating noninflammatory Th2 isotype. CD and NMR revealed predominantly beta-sheet conformation of palmAbeta(1-15) and random coil of PEG-Abeta(1-16). We conclude that the association with liposomes induced a variation of the immunogenic structures and thereby different immunogenicities. This finding supports the hypothesis that Alzheimer's disease is a "conformational" disease, implying that antibodies against amyloid sequences in the beta-sheet conformation are preferred as potential therapeutic agents.


Subject(s)
Alzheimer Disease/prevention & control , Alzheimer Vaccines/immunology , Amyloid beta-Peptides/immunology , Antigens/immunology , Brain/metabolism , Liposomes/immunology , Recognition, Psychology/drug effects , Alzheimer Vaccines/pharmacology , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Analysis of Variance , Animals , Brain/immunology , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay , Epitope Mapping , Mice , Mice, Transgenic , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/genetics , Peptide Fragments/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...