Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-30041401

ABSTRACT

Rainwater is consumed for drinking water in many parts of Australia, either preferentially over municipal water or in regional or remote areas, because rainwater is the primary source of water. Previous rainwater studies in other areas in Australia have shown the levels of some metals to be above the Australian Drinking Water Guidelines (ADWG). This study assessed the level of metals in rainwater harvested in the Adelaide region. Water samples were collected from 53 tanks from three different sampling corridors. A total of 365 water samples were analysed for lead, zinc, copper, and cadmium using atomic absorption spectrophotometry. In 47 out of the 53 tanks, lead was above the ADWG of 0.01 ppm in at least one sample (with 180/365 samples above 0.01 ppm). Zinc was above the ADWG (3.0 ppm) in 53/365 samples, copper was above the ADWG (2.0 ppm) in eight samples out of 365 samples, and cadmium was above the ADWG (0.002 ppm) in 19 samples out of 365 samples. These data are consistent with other studies of rainwater quality in Australia. Comparisons of levels of metals and volume of rainfall in the sampling and preceding month, roof material, and tank material, the presence of a first-flush device, sampling corridor, and sample pH showed that the roof material was related to higher levels of metals. There was a significant relationship between sampling corridors and the levels of lead and zinc. Nine of the tanks surveyed had filters installed. There was a small, but statistically significant, decrease in the levels of metals that passed through a filter prior to collection but, in those samples, filters did not remove metals to below guideline concentrations. An estimate of exposure, and a brief discussion of health risks as a result of exposure to metals, is presented.


Subject(s)
Metals, Heavy/analysis , Rain/chemistry , Water Pollutants, Chemical/analysis , Australia , Drinking Water/standards , Environmental Monitoring , Metals, Heavy/standards , Spectrophotometry, Atomic , Water Pollutants, Chemical/standards , Water Supply/standards
2.
J Environ Public Health ; 2018: 6471324, 2018.
Article in English | MEDLINE | ID: mdl-29606962

ABSTRACT

To address concern regarding water sustainability, the Australian Federal Government and many state governments have implemented regulatory mechanisms and incentives to support households to purchase and install rainwater harvesting systems. This has led to an increase in rainwater harvesting in regional and urban Australia. This review examines the implementation of the regulatory mechanisms across Australia. In addition, the literature investigating the potential health consequences of rainwater consumption in Australia was explored. Studies demonstrated that although trace metals such as arsenic, cadmium, chromium, lead, and iron were present in Australian rainwater, these metallic elements were generally found below the health limit guideline, except in high industrial areas. In addition, pathogenic or indicator microorganisms that include, but are not limited to, Escherichia coli, total and faecal coliforms, Campylobacter, Salmonella, Legionella, Pseudomonas, Cryptosporidium, Enterococci, Giardia, Aeromonas, and Mycobacterium avium Complex (MAC) have been detected in rainwater collected in Australia. However, epidemiological evidence suggests that drinking rainwater does not increase the risk of gastrointestinal disease. It was also identified that there is a need for further research investigating the potential for rainwater to be a source of infection for opportunistic pathogens.


Subject(s)
Drinking Water/analysis , Drinking Water/microbiology , Rain/chemistry , Rain/microbiology , Australia , Drinking Water/parasitology , Metals, Heavy/analysis , Rain/parasitology , Water Supply/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...