Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
1.
Vision Res ; 201: 108125, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244260

ABSTRACT

When subjects are asked to indicate the center of a spatially distributed stimulus, the features that control their responses tend to vary (1) across subjects and (2) as stimulus properties are altered. Here we ask: can subjects bring these different response tendencies under top-down control? In each of three tasks, all using briefly displayed, Gaussian dot-clouds, subjects were trained to perform different center-estimation responses. In the "mass task," the target was the centroid of the dots. In the "hull task," the target was the centroid of the region circumscribed by the convex hull of the dot-cloud. In the "hull-vertex task," the target was the centroid of the vertices of the convex hull. Subjects were able to perform each of the mass- and hull-tasks accurately and reliably. However, they found the hull-vertex task more difficult; errors were substantially larger in this task, and responses tended to be closer to both of the hull- and mass-task centers. The finding that subjects can intentionally target either the centroid of the dots in the stimulus or the centroid of the stimulus convex hull suggests that individual differences in feedback-free experiments may reflect idiosyncratic decisions by different subjects about what combination of these statistics to use in responding.

2.
J Acoust Soc Am ; 151(5): 3152, 2022 05.
Article in English | MEDLINE | ID: mdl-35649937

ABSTRACT

Substantial evidence suggests that sensitivity to the difference between the major vs minor musical scales may be bimodally distributed. Much of this evidence comes from experiments using the "3-task." On each trial in the 3-task, the listener hears a rapid, random sequence of tones containing equal numbers of notes of either a G major or G minor triad and strives (with feedback) to judge which type of "tone-scramble" it was. This study asks whether the bimodal distribution in 3-task performance is due to variation (across listeners) in sensitivity to differences in pitch. On each trial in a "pitch-difference task," the listener hears two tones and judges whether the second tone is higher or lower than the first. When the first tone is roved (rather than fixed throughout the task), performance varies dramatically across listeners with median threshold approximately equal to a quarter-tone. Strikingly, nearly all listeners with thresholds higher than a quarter-tone performed near chance in the 3-task. Across listeners with thresholds below a quarter-tone, 3-task performance was uniformly distributed from chance to ceiling; thus, the large, lower mode of the distribution in 3-task performance is produced mainly by listeners with roved pitch-difference thresholds greater than a quarter-tone.


Subject(s)
Music , Differential Threshold , Hearing , Task Performance and Analysis
3.
Vision Res ; 191: 107964, 2022 02.
Article in English | MEDLINE | ID: mdl-34837766

ABSTRACT

This paper introduces a new method to determine how subjects make discriminations among red-green texture stimuli. More specifically, the method determines (1) the number of mechanisms in human vision sensitive to lights that vary along the constant-S cardinal axis (cSCA) of DKL space and (2) the sensitivity of each mechanism to cSCA lights. Each of five subjects was tested in four, separately-blocked tasks. In each task, the subject strove to detect the location of a patch of cSCA-scramble (a spatially random mixture of cSCA lights) in a large, annular background of cSCA-scramble with a different histogram. In different tasks the target patch was (1) redder, (2) greener, (3) higher in red-green contrast, and (4) lower in red-green contrast than the background. For each subject in each task, we measure how target salience is influenced by different cSCA lights. By assuming that in each task each subject uses a weighted sum of his-or-her available mechanisms to construct a "tool" that is optimal for detecting the target, we can derive the sensitivity functions of the mechanisms underlying performance. Results suggest that human vision possesses three mechanisms sensitive to cSCA lights: a red half-wave linear mechanism, a complementary green half-wave linear mechanism, and a third mechanism that is activated by color-scrambles with low chromatic contrast in high-chromatic-contrast backgrounds.


Subject(s)
Color Perception , Contrast Sensitivity , Color , Female , Humans
4.
Vision Res ; 186: 41-51, 2021 09.
Article in English | MEDLINE | ID: mdl-34034097

ABSTRACT

Human vision is highly efficient in estimating the centroids of spatially scattered items. However, the processes underlying this remarkable skill remain poorly understood. A salient fact is that in estimating the centroids of dot-clouds, observers underweight densely packed dots relative to isolated dots; thus, when an observer estimates the centroid of a dot cloud, the weight exerted on the subject's response by a given dot tends to be suppressed by other dots near it. The current experiment sought to determine whether dots of contrast polarity equal vs. opposite to a given dot differ in how they alter the weight it exerts. Six observers were tested in a task that used brief (180 ms), Gaussian clouds that mixed 9 white and 9 black dots on a gray background. On each trial, the observer strove to mouse-click the centroid of the stimulus cloud weighting all dots equally. The model used to describe the results allows the weight exerted on the subject's response by a given dot to depend on its peripherality in the stimulus cloud as well as on the density of same- and opposite-polarity dots surrounding it. For four observers, peripheral dots exerted lower influence than central dots on responses; the other two showed little effect of peripherality. For all observers, dots in high-density regions exerted less weight on responses than dots in low-density regions. Concerning the primary research question: dots of opposite vs. the same polarity as a given dot suppressed the weight it exerted with equal effectiveness. This suggests that the site of the interaction producing the density effect is a neural population that registers positive and negative contrast polarities in the same way.


Subject(s)
Contrast Sensitivity , Humans , Lighting , Photic Stimulation
5.
J Acoust Soc Am ; 147(6): 3758, 2020 06.
Article in English | MEDLINE | ID: mdl-32611142

ABSTRACT

The difference between major and minor scales plays a central role in Western music. However, recent research using random tone sequences ("tone-scrambles") has revealed a dramatically bimodal distribution in sensitivity to this difference: 30% of listeners are near perfect in classifying major versus minor tone-scrambles; the other 70% perform near chance. Here, whether or not infants show this same pattern is investigated. The anticipatory eye-movements of thirty 6-month-old infants were monitored during trials in which the infants heard a tone-scramble whose quality (major versus minor) signalled the location (right versus left) where a subsequent visual stimulus (the target) would appear. For 33% of infants, these anticipatory eye-movements predicted target location with near perfect accuracy; for the other 67%, the anticipatory eye-movements were unrelated to the target location. In conclusion, six-month-old infants show the same distribution as adults in sensitivity to the difference between major versus minor tone-scrambles.


Subject(s)
Music , Adult , Eye Movements , Hearing , Humans , Infant , Probability
6.
J Acoust Soc Am ; 147(6): 3859, 2020 06.
Article in English | MEDLINE | ID: mdl-32611163

ABSTRACT

When classifying major versus minor tone-scrambles (random sequences of pure tones), most listeners (70%) perform at chance while the remaining listeners perform nearly perfectly. The current study investigated whether inserting rests and cyclic sequences into the stimuli could heighten sensitivity in such tasks. In separate blocks, listeners classified tone-scramble variants as major versus minor ("3" task) or fourth versus tritone ("4" task). In three "Fast" variants, tones were played at 65 ms/tone as a continuous, random stream ("FR"), or with a rest after every fourth tone ("FRwR"), or as a repeating sequence of four tones with a rest after every fourth tone ("FCwR"). In the "Slow" variant, tones were played at 325 ms/tone in random order. In both the 3 and 4 tasks, performance was ordered from best to worst as follows: FRwR > FR > FCwR > Slow. Post hoc analysis revealed that performance was suppressed in the Slow and FCwR task-variants due to a powerful bias inclining listeners to respond "major" or "fourth" ("minor" or "tritone") if the 4-note sequence defining the stimulus ended on a high (low) note. Overall, the results indicate that inserting regular rests into random tone sequences heightens sensitivity to musical mode.


Subject(s)
Music , Rest
7.
Psychol Rev ; 126(4): 550-577, 2019 07.
Article in English | MEDLINE | ID: mdl-31081647

ABSTRACT

Hick's law describes the relation between choice reaction time (RT) and the number of stimulus-response alternatives (NA). For over half a century, this uncertainty effect has been ascribed primarily to the time taken to map a stimulus to its associated response. Here, data from 2 experiments suggests that selection of the appropriate effector-the particular body part to make a response-also contributes substantially to the uncertainty effect. This insight is important both for our understanding of basic cognitive architecture and because many classic experiments studying stimulus-response mapping have confounded NA with the number of effectors. Our data also suggest that, when stimuli are spatial and linked to the responses in an intuitively simple layout, the time required for stimulus-response mapping depends minimally on the NA, independent of effector. Experiment 1 demonstrated that in order to account for the complex patterns of uncertainty effects observed when stimulus type (spatial vs. symbolic), response mode (typing, with multiple effectors vs. touching with a single, known effector), and participant population (skilled vs. novice typists) are all manipulated a model is required that includes effector selection, along with stimulus-response mapping, and a proper treatment of stimulus-response repetitions. Using spatial indicator stimuli that minimized the contributions of stimulus-response mapping, Experiment 2 compared 4 effector conditions-the factorial combination of 1 or 3 fingers on one or both hands. The results showed that the increase in the uncertainty effect associated with the number of effectors is negatively accelerated and possibly additive across the variation of hands and fingers. (PsycINFO Database Record (c) 2019 APA, all rights reserved).


Subject(s)
Choice Behavior/physiology , Models, Psychological , Psychomotor Performance/physiology , Reaction Time/physiology , Uncertainty , Adult , Female , Humans , Male
8.
J Vis ; 19(4): 21, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30998831

ABSTRACT

In a selective centroid task, the participant views a brief cloud of items of different types-some of which are targets, the others distractors-and strives to mouse-click the centroid of the target items, ignoring the distractors. Advantages of the centroid task are that multiple target types can appear in the same display and that influence functions, which estimate the weight of each stimulus type in the cloud on the perceived centroid for each participant, can be obtained easily and efficiently. Here we document the strong, negative impact on performance that results when the participant is instructed to attend to target dots that consist of two or more levels of a single feature dimension, even when those levels differ categorically from those of the distractor dots. The results also show a smaller, but still observable decrement in performance that results when there is heterogeneity in the distractor dots.


Subject(s)
Attention/physiology , Pattern Recognition, Visual/physiology , Adult , Female , Humans , Male , Perceptual Masking/physiology , Psychophysics , Reaction Time/physiology , Young Adult
9.
J Vis ; 19(3): 3, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30884494

ABSTRACT

statistical representations are aggregate properties of the environment that are presumed to be perceived automatically and preattentively. We investigated two tasks presumed to involve these representations: judgments of the centroid of a set of spatially arrayed items and judgments of the mean size of the items in the array. The question we ask is: When similar information is required for both tasks, do observers use it with equal postfilter efficiency (Sun, Chubb, Wright, & Sperling, 2016)? We find that, according to instructions, observers can either efficiently utilize item size in making centroid judgments or ignore it almost completely. Compared to centroid judgments, however, observers estimating mean size incorporate the size of individual items into the average with low efficiency.


Subject(s)
Judgment/physiology , Size Perception/physiology , Adolescent , Adult , Feedback, Psychological/physiology , Female , Humans , Male , Photic Stimulation , Psychomotor Performance/physiology , Young Adult
10.
Vision Res ; 158: 208-220, 2019 05.
Article in English | MEDLINE | ID: mdl-30885878

ABSTRACT

Visual features such as edges and corners are carried by high-order statistics. Previous analysis of discrimination of isodipole textures, which isolate specific high-order statistics, demonstrates visual sensitivity to these statistics but stops short of analyzing the underlying computations. Here we use a new texture centroid paradigm to probe these computations. We focus on two canonical isodipole textures, the even and odd textures: any 2 × 2 block of even (odd) texture contains an even (odd) number of black (and white) checks. Each stimulus comprised a spatially random array of black-and-white texture-disks (background = mean gray) that varied in their fourth-order statistics. In the Even (Odd) condition, disks varied along the continuum between random coinflip texture and pure (highly structured) even (odd) target texture. The task was to mouse-click the centroid of the disk array, weighting each disk location by the target structure level of the disk-texture (ranging from 0 for coinflip to 1 for even or odd). For each of block-sizes S=2×2, 2 × 3, 2 × 4 and 3 × 3, a linear model was used to estimate the weight exerted on the subject's responses by the differently patterned blocks of size S. Only the results with 2 × 4 and 3 × 3 blocks were consistent with the data. In the Even condition, homogeneous blocks exerted the most weight; in the odd condition, block-pattern symmetry was important. These findings show that visual mechanisms sensitive to four-point correlations do not compute evenness or oddness per se, but rather are activated selectively by features whose frequency varies across isodipole textures.


Subject(s)
Form Perception/physiology , Pattern Recognition, Visual/physiology , Contrast Sensitivity/physiology , Discriminant Analysis , Discrimination, Psychological/physiology , Female , Humans , Male
11.
Proc Natl Acad Sci U S A ; 115(52): E12153-E12162, 2018 12 26.
Article in English | MEDLINE | ID: mdl-30545909

ABSTRACT

Grouping is a perceptual process in which a subset of stimulus components (a group) is selected for a subsequent-typically implicit-perceptual computation. Grouping is a critical precursor to segmenting objects from the background and ultimately to object recognition. Here, we study grouping by color. We present subjects with 300-ms exposures of 12 dots colored with the same but unknown identical color interspersed among 14 dots of seven different colors. To indicate grouping, subjects point-click the remembered centroid ("center of gravity") of the set of homogeneous dots, of heterogeneous dots, or of all dots. Subjects accurately judge all of these centroids. Furthermore, after a single stimulus exposure, subjects can judge both the heterogeneous and homogeneous centroids, that is, subjects simultaneously group by similarity and by dissimilarity. The centroid paradigm reveals the relative weight of each dot among targets and distractors to the underlying grouping process, offering a more detailed, quantitative description of grouping than was previously possible. A change detection experiment reveals that conscious memory contains less than two dots and their locations, whereas an ideal detector would have to perfectly process at least 15 of 26 dots to match the subjects' centroid judgments-indicating an extraordinary capacity for preconscious grouping. A different color set yielded identical results. Grouping theories that rely on predefined feature maps would fail to explain these results. Rather, the results indicate that preconscious grouping is automatic, flexible, and rapid, and a far more complex process than previously believed.


Subject(s)
Brain/physiology , Color Perception , Adolescent , Adult , Color , Distance Perception , Female , Humans , Judgment , Male , Reaction Time , Young Adult
12.
J Acoust Soc Am ; 144(4): 2242, 2018 10.
Article in English | MEDLINE | ID: mdl-30404491

ABSTRACT

A tone-scramble is a random sequence of pure tones. Previous studies have found that most listeners (≈ 70%) perform near chance in classifying rapid tone-scrambles composed of multiple copies of notes in G-major vs G-minor triads; the remaining listeners perform nearly perfectly [Chubb, Dickson, Dean, Fagan, Mann, Wright, Guan, Silva, Gregersen, and Kowalski (2013). J. Acoust. Soc. Am. 134(4), 3067-3078; Dean and Chubb (2017). J. Acoust. Soc. Am. 142(3), 1432-1440]. This study tested whether low-performing listeners might improve with slower stimuli. In separate tasks, stimuli were tone-scrambles presented at 115, 231, 462, and 923 notes per min. In each task, the listener classified (with feedback) stimuli as major vs minor. Listeners who performed poorly in any of these tasks performed poorly in all of them. Strikingly, performance was worst in the task with the slowest stimuli. In all tasks, most listeners were biased to respond "major" ("minor") if the stimulus ended on a note high (low) in pitch. Dean and Chubb introduced the name "scale-sensitivity" for the cognitive resource that separates high- from low-performing listeners in tone-scramble classification tasks, suggesting that this resource confers sensitivity to the full gamut of qualities that music can attain by being in a scale. In ruling out the possibility that performance in these tasks depends on speed of presentation, the current results bolster this interpretation.


Subject(s)
Pitch Discrimination , Auditory Threshold , Humans , Models, Neurological , Music , Young Adult
13.
J Acoust Soc Am ; 142(3): 1432, 2017 09.
Article in English | MEDLINE | ID: mdl-28964076

ABSTRACT

A tone-scramble is a rapid, randomly ordered sequence of pure tones. Chubb, Dickson, Dean, Fagan, Mann, Wright, Guan, Silva, Gregersen, and Kowalski [(2013). J. Acoust. Soc. Am. 134(4), 3067-3078] showed that a task requiring listeners to classify major vs minor tone-scrambles yielded a strikingly bimodal distribution. The current study sought to clarify the nature of the skill required in this task. In each of the "semitone" tasks, all tone-scrambles contained eight each of the notes G5, D6, and G6 (to establish G as the tonic) and eight copies of a target note. The target note was either A♭ or A in the "2" task, B♭ or B in the "3" task, C or D♭ in the "4" task, E♭ or E in the "6" task, and F or G♭ in the "7" task. On each trial, the listener strove to classify each stimulus according to its target note. Performance was best (and nearly equal) in the 2, 3, and 6 tasks, intermediate in the 4 task and worst in the 7 task. The results were well-described by a model in which a single cognitive resource controls performance in all five semitone tasks. This resource is called "scale sensitivity" here because it seems to confer general sensitivity to variations in scale in the presence of a fixed tonic.


Subject(s)
Discrimination, Psychological , Models, Biological , Music/psychology , Pitch Discrimination , Cognition , Humans , Psychoacoustics
14.
Annu Rev Vis Sci ; 3: 275-296, 2017 09 15.
Article in English | MEDLINE | ID: mdl-28937948

ABSTRACT

Visual textures are a class of stimuli with properties that make them well suited for addressing general questions about visual function at the levels of behavior and neural mechanism. They have structure across multiple spatial scales, they put the focus on the inferential nature of visual processing, and they help bridge the gap between stimuli that are analytically convenient and the complex, naturalistic stimuli that have the greatest biological relevance. Key questions that are well suited for analysis via visual textures include the nature and structure of perceptual spaces, modulation of early visual processing by task, and the transformation of sensory stimuli into patterns of population activity that are relevant to perception.


Subject(s)
Pattern Recognition, Visual/physiology , Visual Cortex/physiology , Visual Perception/physiology , Attention/physiology , Discrimination, Psychological/physiology , Humans , Visual Fields/physiology
15.
Proc Natl Acad Sci U S A ; 113(43): E6712-E6720, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27791040

ABSTRACT

The visual images in the eyes contain much more information than the brain can process. An important selection mechanism is feature-based attention (FBA). FBA is best described by attention filters that specify precisely the extent to which items containing attended features are selectively processed and the extent to which items that do not contain the attended features are attenuated. The centroid-judgment paradigm enables quick, precise measurements of such human perceptual attention filters, analogous to transmission measurements of photographic color filters. Subjects use a mouse to locate the centroid-the center of gravity-of a briefly displayed cloud of dots and receive precise feedback. A subset of dots is distinguished by some characteristic, such as a different color, and subjects judge the centroid of only the distinguished subset (e.g., dots of a particular color). The analysis efficiently determines the precise weight in the judged centroid of dots of every color in the display (i.e., the attention filter for the particular attended color in that context). We report 32 attention filters for single colors. Attention filters that discriminate one saturated hue from among seven other equiluminant distractor hues are extraordinarily selective, achieving attended/unattended weight ratios >20:1. Attention filters for selecting a color that differs in saturation or lightness from distractors are much less selective than attention filters for hue (given equal discriminability of the colors), and their filter selectivities are proportional to the discriminability distance of neighboring colors, whereas in the same range hue attention-filter selectivity is virtually independent of discriminabilty.


Subject(s)
Attention/physiology , Color Perception/physiology , Discrimination, Psychological , Pattern Recognition, Visual/physiology , Female , Humans , Male , Photic Stimulation , Reaction Time , Young Adult
16.
Atten Percept Psychophys ; 78(1): 293-308, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26518015

ABSTRACT

The finding that an item of type A pops out from an array of distractors of type B typically is taken to support the inference that human vision contains a neural mechanism that is activated by items of type A but not by items of type B. Such a mechanism might be expected to yield a neural image in which items of type A produce high activation and items of type B low (or zero) activation. Access to such a neural image might further be expected to enable accurate estimation of the centroid of an ensemble of items of type A intermixed with to-be-ignored items of type B. Here, it is shown that as the number of items in stimulus displays is increased, performance in estimating the centroids of horizontal (vertical) items amid vertical (horizontal) distractors degrades much more quickly and dramatically than does performance in estimating the centroids of white (black) items among black (white) distractors. Together with previous findings, these results suggest that, although human vision does possess bottom-up neural mechanisms sensitive to abrupt local changes in bar-orientation, and although human vision does possess and utilize top-down global attention filters capable of selecting multiple items of one brightness or of one color from among others, it cannot use a top-down global attention filter capable of selecting multiple bars of a given absolute orientation and filtering bars of the opposite orientation in a centroid task.


Subject(s)
Attention/physiology , Orientation , Pattern Recognition, Visual/physiology , Adult , Color , Female , Humans , Male , Photic Stimulation/methods , Task Performance and Analysis
17.
Atten Percept Psychophys ; 78(2): 474-515, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26552652

ABSTRACT

This paper elaborates a recent conceptualization of feature-based attention in terms of attention filters (Drew et al., Journal of Vision, 10(10:20), 1-16, 2010) into a general purpose centroid-estimation paradigm for studying feature-based attention. An attention filter is a brain process, initiated by a participant in the context of a task requiring feature-based attention, which operates broadly across space to modulate the relative effectiveness with which different features in the retinal input influence performance. This paper describes an empirical method for quantitatively measuring attention filters. The method uses a "statistical summary representation" (SSR) task in which the participant strives to mouse-click the centroid of a briefly flashed cloud composed of items of different types (e.g., dots of different luminances or sizes), weighting some types of items more strongly than others. In different attention conditions, the target weights for different item types in the centroid task are varied. The actual weights exerted on the participant's responses by different item types in any given attention condition are derived by simple linear regression. Because, on each trial, the centroid paradigm obtains information about the relative effectiveness of all the features in the display, both target and distractor features, and because the participant's response is a continuous variable in each of two dimensions (versus a simple binary choice as in most previous paradigms), it is remarkably powerful. The number of trials required to estimate an attention filter is an order of magnitude fewer than the number required to investigate much simpler concepts in typical psychophysical attention paradigms.


Subject(s)
Attention , Psychophysics/methods , Humans , Models, Psychological , Photic Stimulation
18.
Vision Res ; 111(Pt A): 43-54, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25872181

ABSTRACT

UNLABELLED: In the Barber-Pole Illusion (BPI), a diagonally moving grating is perceived as moving vertically because of the narrow, vertical, rectangular shape of the aperture window through which it is viewed. This strong shape-motion interaction persists through a wide range of parametric variations in the shape of the window, the spatial and temporal frequencies of the moving grating, the contrast of the moving grating, complex variations in the composition of the grating and window shape, and the duration of viewing. It is widely believed that end-stop-feature (third-order) motion computations determine the BPI, and that Fourier motion-energy (first-order) computations determine failures of the BPI. Here we show that the BPI is more complex: (1) In a wide variety of conditions, weak-feature stimuli (extremely fast, low contrast gratings, 21.5 Hz, 4% contrast) that stimulate only the Fourier (first-order) motion system actually produce a slightly better BPI illusion than classical strong-feature gratings (2.75 Hz, 32% contrast). (2) Reverse-phi barber-pole stimuli are seen exclusively in the feature (third-order) BPI direction when presented at 2.75 Hz and exclusively in the opposite (Fourier, first-order) BPI direction at 21.5Hz, indicating that both the first- and the third-order systems can produce the BPI. (3) The BPI in barber poles with scalloped aperture boundaries is much weaker than in normal straight-edge barber poles for 2.75 Hz stimuli but not in 21.5 Hz stimuli. CONCLUSIONS: Both first-order and third-order stimuli produce strong BPIs. In some stimuli, local Fourier motion-energy (first-order) produces the BPI via a subsequent motion-path-integration computation (Journal of Vision (2014) 14, 1--27); in other stimuli, the BPI is determined by various feature (third-order) motion inputs; in most stimuli, the BPI involves combinations of both. High temporal frequency, low-contrast stimuli favor the first-order motion-path-integration computation; low temporal frequency, high-contrast stimuli favor third-order motion computations.


Subject(s)
Form Perception/physiology , Motion Perception/physiology , Optical Illusions/physiology , Adult , Analysis of Variance , Humans , Models, Theoretical , Photic Stimulation/methods
19.
Article in English | MEDLINE | ID: mdl-25701389

ABSTRACT

We review recent research on the visual mechanisms of rapid adaptive camouflage in cuttlefish. These neurophysiologically complex marine invertebrates can camouflage themselves against almost any background, yet their ability to quickly (0.5-2 s) alter their body patterns on different visual backgrounds poses a vexing challenge: how to pick the correct body pattern amongst their repertoire. The ability of cuttlefish to change appropriately requires a visual system that can rapidly assess complex visual scenes and produce the motor responses-the neurally controlled body patterns-that achieve camouflage. Using specifically designed visual backgrounds and assessing the corresponding body patterns quantitatively, we and others have uncovered several aspects of scene variation that are important in regulating cuttlefish patterning responses. These include spatial scale of background pattern, background intensity, background contrast, object edge properties, object contrast polarity, object depth, and the presence of 3D objects. Moreover, arm postures and skin papillae are also regulated visually for additional aspects of concealment. By integrating these visual cues, cuttlefish are able to rapidly select appropriate body patterns for concealment throughout diverse natural environments. This sensorimotor approach of studying cuttlefish camouflage thus provides unique insights into the mechanisms of visual perception in an invertebrate image-forming eye.


Subject(s)
Adaptation, Physiological/physiology , Decapodiformes/physiology , Visual Perception/physiology , Animals , Ocular Physiological Phenomena , Skin Pigmentation/physiology
20.
Vision Res ; 101: 94-107, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24932891

ABSTRACT

Previous research supports the claim that human vision has three dimensions of sensitivity to grayscale scrambles (textures composed of randomly scrambled mixtures of different grayscales). However, the preattentive mechanisms (called here "field-capture channels") that confer this sensitivity remain obscure. The current experiments sought to characterize the specific field-capture channels that confer this sensitivity using a task in which the participant is required to detect the location of a small patch of one type of grayscale scramble in an extended background of another type. Analysis of the results supports the existence of four field-capture channels: (1) the (previously characterized) "blackshot" channel, sharply tuned to the blackest grayscales; (2) a (previously unknown) "gray-tuned" field-capture channel whose sensitivity is zero for black rising sharply to maximum sensitivity for grayscales slightly darker than mid-gray then decreasing to half-height for brighter grayscales; (3) an "up-ramped" channel whose sensitivity is zero for black, increases linearly with increasing grayscale reaching a maximum near white; (4) a (complementary) "down-ramped" channel whose sensitivity is maximal for black, decreases linearly reaching a minimum near white. The sensitivity functions of field-capture channels (3) and (4) are linearly dependent; thus, these four field-capture channels collectively confer sensitivity to a 3-dimensional space of histogram variations.


Subject(s)
Contrast Sensitivity/physiology , Discrimination, Psychological , Pattern Recognition, Visual/physiology , Attention/physiology , Humans , Models, Theoretical , Photic Stimulation/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...