Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
J Occup Environ Hyg ; 18(3): 103-109, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33476255

ABSTRACT

Field-based methods for the analysis of respirable crystalline silica are now possible with the availability of portable instrumentation. Such methods also require the use of cassettes that facilitate direct-on-filter analysis of field samples. Conventional sampling cassettes can be modified such that they are amenable to direct-on-filter analysis while remaining compatible with common respirable dust samplers. The required modifications are described herein, and one version of such an analysis-ready cassette is described and evaluated in comparison to more traditional cassette designs. The novel cassette was found to result in a slightly higher mass of collected respirable material (for the same sampling duration), though this is likely due to the conductive material of the cassettes, which prevents particle wall losses in comparison to the more commonly used styrene cassette material. Both types of cassettes demonstrated comparable predictability in terms of respirable crystalline silica in a sample.


Subject(s)
Air Pollutants, Occupational , Occupational Exposure , Air Pollutants, Occupational/analysis , Dust/analysis , Environmental Monitoring , Inhalation Exposure/analysis , Occupational Exposure/analysis , Silicon Dioxide/analysis
2.
Ann Work Expo Health ; 64(5): 536-546, 2020 06 24.
Article in English | MEDLINE | ID: mdl-32266371

ABSTRACT

Exposure to dusts containing respirable crystalline silica is a recognized hazard affecting various occupational groups such as miners. Inhalation of respirable crystalline silica can lead to silicosis, which is a potentially fatal lung disease. Currently, miners' exposure to respirable crystalline silica is assessed by collecting filter samples that are sent for laboratory analysis. A more timely field-based silica monitoring method using direct-on-filter (DoF) analysis is being developed by researchers at the National Institute for Occupational Safety and Health (NIOSH) to provide mine operators with the option to evaluate miners' exposure at the mine. This field-based silica monitoring technique involves the use of portable Fourier transform infrared (FTIR) instruments. As a step in the development of this new analytical technique, four commercially available portable FTIR instruments were evaluated for their ability to provide reproducible measurements from filter samples containing respirable crystalline silica. Reported testing indicates that measurements varied within ±4.1% between instruments for filter samples that contained high-purity respirable crystalline silica. Measurements varied within ±3.0% between instruments for filter samples that contained varying mineral composition. Filter samples were repeatedly analyzed by the same instrument over short and extended periods of time, and mean coefficients of variation did not exceed ±1.6 and ±2.4%, respectively. Mixed model analysis revealed that there was no statistically significant (P < 0.05) change in average measurements made over an extended period of time for all instruments. Results suggest that each of the four FTIR instruments evaluated in this study were able to generate precise and reproducible DoF analysis results of respirable dust samples.


Subject(s)
Occupational Exposure , Dust/analysis , Environmental Monitoring , Fourier Analysis , Humans , Inhalation Exposure/analysis , Occupational Exposure/analysis , Silicon Dioxide/analysis , Spectroscopy, Fourier Transform Infrared
3.
Min Metall Explor ; 37(2): 717-726, 2020.
Article in English | MEDLINE | ID: mdl-35836821

ABSTRACT

Exposure to respirable crystalline silica (RCS) can cause serious and irreparable negative health effects, including silicosis and lung cancer. Workers in coal mines have the potential of being exposed to RCS found in dust generated by various mining processes. The silica content of respirable dust in one single mine can vary substantially over both time and location. The current monitoring approach for RCS relies on the use of traditional air sampling followed by laboratory analysis. Results generated using this approach are generally not available for several days to several weeks after sampling, and this delay prevents timely and effective intervention if needed. An alternate analytical method is needed to reduce the time required to quantify the RCS exposure of mine workers. The National Institute for Occupational Safety and Health (NIOSH) has developed a new method using commercially available portable infrared spectrometers for measuring RCS at the end of the sampling shift. This paper will describe the application of the new field-based RCS analytical process for coal mines, including the use of the new method with the existing Coal Mine Dust Personal Sampler Unit. In a case study conducted by NIOSH with a coal mine operator in West Virginia, field-based RCS analysis was completed at a mine site to evaluate the new technique. The RCS analysis results obtained by the field-based method in this case study showed sufficiently strong correlation with results obtained by the MSHA standard laboratory analysis method to allow the mine operator to use the field-based method for evaluating process improvements.

4.
Article in English | MEDLINE | ID: mdl-28989204

ABSTRACT

Filter-based toxicology studies are conducted to establish the biological plausibility of the well-established health impacts associated with fine particulate matter (PM2.5) exposure. Ambient PM2.5 collected on filters is extracted into solution for toxicology applications, but frequently, characterization is nonexistent or only performed on filter-based PM2.5, without consideration of compositional differences that occur during the extraction processes. To date, the impact of making associations to measured components in ambient instead of extracted PM2.5 has not been investigated. Filter-based PM2.5 was collected at locations (n = 5) and detailed characterization of both ambient and extracted PM2.5 was performed. Alveolar macrophages (AMJ2-C11) were exposed (3, 24, and 48 h) to PM2.5 and the pro-inflammatory cytokine interleukin (IL)-6 was measured. IL-6 release differed significantly between PM2.5 collected from different locations; surprisingly, IL-6 release was highest following treatment with PM2.5 from the lowest ambient concentration location. IL-6 was negatively correlated with the sum of ambient metals analyzed, as well as with concentrations of specific constituents which have been previously associated with respiratory health effects. However, positive correlations of IL-6 with extracted concentrations indicated that the negative associations between IL-6 and ambient concentrations do not accurately represent the relationship between inflammation and PM2.5 exposure. Additionally, seven organic compounds had significant associations with IL-6 release when considering ambient concentrations, but they were not detected in the extracted solution. Basing inflammatory associations on ambient concentrations that are not necessarily representative of in vitro exposures creates misleading results; this study highlights the importance of characterizing extraction solutions to conduct accurate health impact research.

5.
Aerosol Air Qual Res ; 17(1): 24-33, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28217139

ABSTRACT

Dust containing crystalline silica is common in mining environments in the U.S. and around the world. The exposure to respirable crystalline silica remains an important occupational issue and it can lead to the development of silicosis and other respiratory diseases. Little has been done with regard to the characterization of the crystalline silica content of specific particle sizes of mine-generated dust. Such characterization could improve monitoring techniques and control technologies for crystalline silica, decreasing worker exposure to silica and preventing future incidence of silicosis. Three gold mine dust samples were aerosolized in a laboratory chamber. Particle size-specific samples were collected for gravimetric analysis and for quantification of silica using the Microorifice Uniform Deposit Impactor (MOUDI). Dust size distributions were characterized via aerodynamic and scanning mobility particle sizers (APS, SMPS) and gravimetrically via the MOUDI. Silica size distributions were constructed using gravimetric data from the MOUDI and proportional silica content corresponding to each size range of particles collected by the MOUDI, as determined via X-ray diffraction and infrared spectroscopic quantification of silica. Results indicate that silica does not comprise a uniform proportion of total dust across all particle sizes and that the size distributions of a given dust and its silica component are similar but not equivalent. Additional research characterizing the silica content of dusts from a variety of mine types and other occupational environments is necessary in order to ascertain trends that could be beneficial in developing better monitoring and control strategies.

6.
Sci Total Environ ; 573: 27-38, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27544653

ABSTRACT

Capturing intra-urban variation in diesel-related pollution exposures remains a challenge, given its complex chemical mix, and relatively few well-characterized ambient-air tracers for the multiple diesel sources in densely-populated urban areas. To capture fine-scale spatial resolution (50×50m grid cells) in diesel-related pollution, we used geographic information systems (GIS) to systematically allocate 36 sampling sites across downtown Pittsburgh, PA, USA (2.8km2), cross-stratifying to disentangle source impacts (i.e., truck density, bus route frequency, total traffic density). For buses, outbound and inbound trips per week were summed by route and a kernel density was calculated across sites. Programmable monitors collected fine particulate matter (PM2.5) samples specific to workweek hours (Monday-Friday, 7 am-7 pm), summer and winter 2013. Integrated filters were analyzed for black carbon (BC), elemental carbon (EC), organic carbon (OC), elemental constituents, and diesel-related organic compounds [i.e., polycyclic aromatic hydrocarbons (PAHs), hopanes, steranes]. To our knowledge, no studies have collected this suite of pollutants with such high sampling density, with the ability to capture spatial patterns during specific hours of interest. We hypothesized that we would find substantial spatial variation for each pollutant and significant associations with key sources (e.g. diesel and gasoline vehicles), with higher concentrations near the center of this small downtown core. Using a forward stepwise approach, we developed seasonal land use regression (LUR) models for PM2.5, BC, total EC, OC, PAHs, hopanes, steranes, aluminum (Al), calcium (Ca), and iron (Fe). Within this small domain, greater concentration differences were observed in most pollutants across sites, on average, than between seasons. Higher PM2.5 and BC concentrations were found in the downtown core compared to the boundaries. PAHs, hopanes, and steranes displayed different spatial patterning across the study area by constituent. Most LUR models suggested a strong influence of bus-related emissions on pollution gradients. Buses were more dominant predictors compared to truck and vehicular traffic for several pollutants. Overall, we found substantial variation in diesel-related concentrations in a very small downtown area, which varied across elemental and organic components.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Particulate Matter/analysis , Vehicle Emissions/analysis , Carbon/analysis , Cities , Geographic Information Systems , Metals/analysis , Motor Vehicles , Particle Size , Pennsylvania , Polycyclic Aromatic Hydrocarbons/analysis , Seasons , Time Factors , Urbanization
7.
Inhal Toxicol ; 27(13): 673-81, 2015.
Article in English | MEDLINE | ID: mdl-26446919

ABSTRACT

Research on the health effects of fine particulate matter (PM2.5) frequently disregards the differences in particle composition between that measured on an ambient filter versus that measured in the corresponding extraction solution used for toxicological testing. This study presents a novel method for characterizing the differences, in metallic and organic species, between the ambient samples and the corresponding extracted solutions through characterization of extracted PM2.5 suspended on filters. Removal efficiency was found to be 98.0 ± 1.4% when measured using pre- and post-removal filter weights, however, this efficiency was significantly reduced to 80.2 ± 0.8% when measured based on particle mass in the extraction solution. Furthermore, only 47.2 ± 22.3% of metals and 24.8 ± 14.5% of organics measured on the ambient filter were found in the extraction solution. Individual metallic and organic components were extracted with varying efficiency, with many organics being lost entirely during extraction. Finally, extraction efficiencies of specific PM2.5 components were inversely correlated with total mass. This study details a method to assess compositional alterations resulting from extraction of PM2.5 from filters, emphasizing the need for standardized procedures that maintain compositional integrity of ambient samples for use in toxicology studies of PM2.5.


Subject(s)
Air Pollutants/analysis , Chemistry Techniques, Analytical/methods , Particulate Matter/analysis , Air Pollutants/chemistry , Culture Media/chemistry , Environmental Monitoring , Filtration , Hydrocarbons/analysis , Metals/analysis , Methanol/chemistry , Particulate Matter/chemistry , Polytetrafluoroethylene/chemistry , Solvents/chemistry , Toxicity Tests
8.
Am J Community Psychol ; 56(1-2): 145-55, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26148979

ABSTRACT

There is growing interest in the role of psychosocial stress in health disparities. Identifying which social stressors are most important to community residents is critical for accurately incorporating stressor exposures into health research. Using a community-academic partnered approach, we designed a multi-community study across the five boroughs of New York City to characterize resident perceptions of key neighborhood stressors. We conducted 14 community focus groups; two to three in each borough, with one adolescent group and one Spanish-speaking group per borough. We then used systematic content analysis and participant ranking data to describe prominent neighborhood stressors and identify dominant themes. Three inter-related themes regarding the social and structural sources of stressful experiences were most commonly identified across neighborhoods: (1) physical disorder and perceived neglect, (2) harassment by police and perceived safety and (3) gentrification and racial discrimination. Our findings suggest that multiple sources of distress, including social, political, physical and economic factors, should be considered when investigating health effects of community stressor exposures and psychological distress. Community expertise is essential for comprehensively characterizing the range of neighborhood stressors that may be implicated in psychosocial exposure pathways.


Subject(s)
Police , Racism , Residence Characteristics , Safety , Social Behavior , Stress, Psychological , Adolescent , Adult , Black or African American , Aged , Aged, 80 and over , Female , Focus Groups , Health Status Disparities , Hispanic or Latino , Humans , Male , Middle Aged , New York City , Politics , Qualitative Research , Socioeconomic Factors , Young Adult
9.
Environ Health ; 13(1): 28, 2014 Apr 16.
Article in English | MEDLINE | ID: mdl-24735818

ABSTRACT

BACKGROUND: Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. METHODS: We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. RESULTS: During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. CONCLUSIONS: Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/methods , Carbon/analysis , Cities , Geographic Information Systems , Nitrogen Dioxide/analysis , Particulate Matter/analysis , Pennsylvania , Regression Analysis , Seasons , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...