Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ACS Catal ; 13(4): 2681-2695, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36846823

ABSTRACT

The biodegradable, aliphatic polyester poly(lactic acid), PLA, is a leading bio-based alternative to petrochemical-derived plastic materials across a range of applications. Widely reported in the available literature as a benchmark for PLA production via the bulk ring-opening polymerization of lactides is the use of divalent tin catalysts, and particularly tin(II) bis(2-ethylhexanoate). We present an alternative zirconium-based system that combines an inexpensive Group IV metal with the robustness, high activity, control, and designed compatibility with existing facilities and processes, that are required for industrial use. We have carried out a comprehensive kinetic study and applied a combined experimental and theoretical approach to understanding the mechanism by which the polymerization of lactide proceeds in the presence of this system. In the laboratory-scale (20 g) polymerization of recrystallized racemic d,l-lactide (rac-lactide), we have measured catalyst turnover frequencies up to at least 56,000 h-1, and confirmed the reported protocols' resistance toward undesirable epimerization, transesterification, and chain scission processes, deleterious to the properties of the polymer product. Further optimization and scale-up under industrial conditions have confirmed the relevance of the catalytic protocol to the commercial production of melt-polymerized PLA. We were able to undertake the efficient preparation of high-molecular-weight PLA on the 500-2000 g scale, via the selective and well-controlled polymerization of commercial polymer-grade l-lactide under challenging, industrially relevant conditions, and at metal concentrations as low as 8-12 ppm Zr by weight ([Zr] = 1.3 × 10-3 to 1.9 × 10-3 mol %). Under those conditions, a catalyst turnover number of at least 60,000 was attained, and the activity of the catalyst was comparable to that of tin(II) bis(2-ethylhexanoate).

2.
Microb Cell Fact ; 20(1): 221, 2021 Dec 07.
Article in English | MEDLINE | ID: mdl-34876155

ABSTRACT

Lipid-based biofuels, such as biodiesel and hydroprocessed esters, are a central part of the global initiative to reduce the environmental impact of the transport sector. The vast majority of production is currently from first-generation feedstocks, such as rapeseed oil, and waste cooking oils. However, the increased exploitation of soybean oil and palm oil has led to vast deforestation, smog emissions and heavily impacted on biodiversity in tropical regions. One promising alternative, potentially capable of meeting future demand sustainably, are oleaginous yeasts. Despite being known about for 143 years, there has been an increasing effort in the last decade to develop a viable industrial system, with currently around 100 research papers published annually. In the academic literature, approximately 160 native yeasts have been reported to produce over 20% of their dry weight in a glyceride-rich oil. The most intensively studied oleaginous yeast have been Cutaneotrichosporon oleaginosus (20% of publications), Rhodotorula toruloides (19%) and Yarrowia lipolytica (19%). Oleaginous yeasts have been primarily grown on single saccharides (60%), hydrolysates (26%) or glycerol (19%), and mainly on the mL scale (66%). Process development and genetic modification (7%) have been applied to alter yeast performance and the lipids, towards the production of biofuels (77%), food/supplements (24%), oleochemicals (19%) or animal feed (3%). Despite over a century of research and the recent application of advanced genetic engineering techniques, the industrial production of an economically viable commodity oil substitute remains elusive. This is mainly due to the estimated high production cost, however, over the course of the twenty-first century where climate change will drastically change global food supply networks and direct governmental action will likely be levied at more destructive crops, yeast lipids offer a flexible platform for localised, sustainable lipid production. Based on data from the large majority of oleaginous yeast academic publications, this review is a guide through the history of oleaginous yeast research, an assessment of the best growth and lipid production achieved to date, the various strategies employed towards industrial production and importantly, a critical discussion about what needs to be built on this huge body of work to make producing a yeast-derived, more sustainable, glyceride oil a commercial reality.


Subject(s)
Research , Yarrowia/genetics , Yarrowia/metabolism , Basidiomycota/genetics , Basidiomycota/metabolism , Biofuels , Biomass , Lipids/biosynthesis , Metabolic Engineering/methods
3.
Biology (Basel) ; 10(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34943142

ABSTRACT

Metschnikowia pulcherrima is a non-conventional yeast with potential to be used in biotechnological processes, especially those involving low-cost feedstock exploitation and biocontrol applications. The combination of traits that supports these industrial applications in M. pulcherrima also makes it an attractive option to study in the context of livestock health. In this study, we examined the specific interactions between M. pulcherrima and multiple avian pathogenic bacteria. We tested individual bacteria-yeast interactions and bacterial combinations in both solid and liquid media and in variable nutrient environments. Across multiple isolates of M. pulcherrima, we observed different levels of antimicrobial activity, varying from supporting the growth of competing bacteria through suppression and bacterial killing, and we found that these responses varied depending on the bacterial strains and media. We identified multiple molecular routes, including proteins produced by M. pulcherrima strains, that acted to control these microbial interactions. Furthermore, protein screening revealed that M. pulcherrima strains were induced to produce proteins specifically when exposed to bacterial strains, suggesting that fine-tuned mechanisms allow M. pulcherrima to function as a potential lynchpin in a microbial community.

4.
Biotechnol Biofuels ; 14(1): 57, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33663577

ABSTRACT

BACKGROUND: Heterotrophic single-cell oils (SCOs) are one potential replacement to lipid-derived biofuels sourced from first-generation crops such as palm oil. However, despite a large experimental research effort in this area, there are only a handful of techno-economic modelling publications. As such, there is little understanding of whether SCOs are, or could ever be, a potential competitive replacement. To help address this question, we designed a detailed model that coupled a hypothetical heterotroph (using the very best possible biological lipid production) with the largest and most efficient chemical plant design possible. RESULTS: Our base case gave a lipid selling price of $1.81/kg for ~ 8,000 tonnes/year production, that could be reduced to $1.20/kg on increasing production to ~ 48,000 tonnes of lipid a year. A range of scenarios to further reduce this cost were then assessed, including using a thermotolerant strain (reducing the cost from $1.20 to $1.15/kg), zero-cost electricity ($ 1.12/kg), using non-sterile conditions ($1.19/kg), wet extraction of lipids ($1.16/kg), continuous production of extracellular lipid ($0.99/kg) and selling the whole yeast cell, including recovering value for the protein and carbohydrate ($0.81/kg). If co-products were produced alongside the lipid then the price could be effectively reduced to $0, depending on the amount of carbon funnelled away from lipid production, as long as the co-product could be sold in excess of $1/kg. CONCLUSIONS: The model presented here represents an ideal case that which while not achievable in reality, importantly would not be able to be improved on, irrespective of the scientific advances in this area. From the scenarios explored, it is possible to produce lower cost SCOs, but research must start to be applied in three key areas, firstly designing products where the whole cell is used. Secondly, further work on the product systems that produce lipids extracellularly in a continuous processing methodology or finally that create an effective biorefinery designed to produce a low molecular weight, bulk chemical, alongside the lipid. All other research areas will only ever give incremental gains rather than leading towards an economically competitive, sustainable, microbial oil.

5.
ACS Omega ; 5(32): 20586-20598, 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32832812

ABSTRACT

Food waste is a promising resource for the production of fuels and chemicals. However, increasing plastic contamination has a large impact on the efficiency of conversion for the more established biological routes such as anaerobic digestion or fermentation. Here, we assessed a novel route through the hydrothermal liquefaction (HTL) of a model waste (pistachio hulls) and polypropylene (PP). Pure pistachio hulls gave a biocrude yield of 34% (w/w), though this reduced to 16% (w/w) on the addition of 50% PP in the mixture. The crude composition was a complex blend of phenolics, alkanes, carboxylic acids, and other oxygenates, which did not change substantially on the addition of PP. Pure PP does not breakdown at all under HTL conditions (350 °C, 15% solids loading), and even with biomass, there is only a small synergistic effect resulting in a conversion of 19% PP. This conversion was enhanced through using typical HTL catalysts including Fe, FeSO4·7H2O, MgSO4·H2O, ZnSO4·7H2O, ZSM-5, aluminosilicate, Y-zeolite, and Na2CO3; the conversion of PP reached a maximum of 38% with the aluminosilicate, for example. However, the PP almost exclusively broke down into a solid-phase product, with no enhancement of the biocrude fraction. The mechanism was explored, and with the addition of the radical scavenger butylated hydroxytoluene (BHT), the conversion of plastic reduced substantially, demonstrating that radical formation is necessary. As a result, the plastic conversion was enhanced to over 50% through the addition of the co-solvent and hydrogen donor, formic acid, and the radical donor, hydrogen peroxide. The addition of formic acid also changed the crude composition, including more carboxylic acids and oxygenated species than the conversion of the biomass alone; however, the majority of the carbon distributed to the volatile organic gas fraction producing an array of short-chain volatile hydrocarbons, which potentially could be repolymerized as a polyolefin or combined with the biocrude for further processing. Catalytic HTL was therefore shown to be a promising method for the valorization of polyolefins with biomass under typical HTL conditions.

6.
Biotechnol Biofuels ; 13: 127, 2020.
Article in English | MEDLINE | ID: mdl-32695223

ABSTRACT

BACKGROUND: Heterotrophic microbial oils are potentially a more sustainable alternative to vegetable or fossil oils for food and fuel applications. However, as almost all work in the area is conducted on the laboratory scale, such studies carry limited industrial relevance and do not give a clear indication of what is required to produce an actual industrial process. Metschnikowia pulcherrima is a non-pathogenic industrially promising oleaginous yeast which exhibits numerous advantages for cost-effective lipid production, including a wide substrate uptake, antimicrobial activity and fermentation inhibitor tolerance. In this study, M. pulcherrima was fermented in stirred tank reactors of up to 350 L with 250-L working volume in both batch and semi-continuous operation to highlight the potential industrial relevance. Due to being food-grade, suitable for handling at scale and to demonstrate the oligosaccharide uptake capacity of M. pulcherrima, enzyme-hydrolysed starch in the form of glucose syrup was selected as fermentation feedstock. RESULTS: In batch fermentations on the 2-L scale, a lipid concentration of 14.6 g L-1 and productivity of 0.11 g L-1 h-1 were achieved, which was confirmed at 50 L (15.8 g L-1; 0.10 g L-1 h-1). The maximum lipid production rate was 0.33 g L-1 h-1 (daily average), but the substrate uptake rate decreased with oligosaccharide chain length. To produce 1 kg of dry yeast biomass containing up to 43% (w/w) lipids, 5.2 kg of the glucose syrup was required, with a lipid yield of up to 0.21 g g-1 consumed saccharides. In semi-continuous operation, for the first time, an oleaginous yeast was cultured for over 2 months with a relatively stable lipid production rate (around 0.08 g L-1 h-1) and fatty acid profile (degree of fatty acid saturation around 27.6% w/w), and without contamination. On the 250-L scale, comparable results were observed, culminating in the generation of nearly 10 kg lipids with a lipid productivity of 0.10 g L-1 h-1. CONCLUSIONS: The results establish the importance of M. pulcherrima for industrial biotechnology and its suitability to commercially produce a food-grade oil. Further improvements in the productivity are required to make M. pulcherrima lipid production industrial reality, particularly when longer-chain saccharides are involved.

7.
Bioresour Technol ; 303: 122862, 2020 May.
Article in English | MEDLINE | ID: mdl-32037189

ABSTRACT

Oleaginous microalgae and yeast are of increasing interest as a renewable resource for single cell oils (SCOs). These have applications in fuels, feed and food products. In order to become cost competitive with existing terrestrial oils, a biorefinery approach is often taken where several product streams are valorised alongside the SCO. Whilst many life cycle assessment (LCA) and Techno-economic (TEA) studies have employed this biorefinery approach to SCO production, a systematic analysis of their implications is missing. This review evaluates the economic and environmental impacts associated with the use of coproducts. Overall, protein production plays the greatest role in determining viability, with coproduct strategy crucial to considering in the early stages of research and development.


Subject(s)
Biofuels , Microalgae , Plant Oils , Saccharomyces cerevisiae
8.
Waste Manag ; 102: 351-361, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-31726315

ABSTRACT

Mixed, wet, plastic streams containing food waste residues are being increasingly collected at point of use, but are extremely challenging to recycle and are therefore largely sent to landfill. While a challenging waste problem, this also represents an underutilised feedstock, which could be co-processed with biomass, increasing the scope of products, easing out seasonal variation in biomass production and increasing the production capacity of a traditional biorefinery. One promising method of biomass conversion is hydrothermal liquefaction (HTL), where lignocellulosic residues are broken down in water at high temperatures and pressures to produce a bio-crude oil, a solid residue and an aqueous fertiliser. In this study, the co-processing of common plastic waste with pistachio hulls was assessed to investigate the suitability of the HTL approach. The HTL of pistachio hulls was undertaken at 350 °C over 15 and 60 min, with four commonly used plastics: polyethylene, polypropylene, PET and nylon-6, in blends of up to 20 wt% plastic to biomass. A novel FT-IR method was developed to estimate the conversion of plastics in the system, and the product phases were fully analysed. High yields of up to 35% bio-crude were achieved, and under optimal conditions, nylon-6 and PET were found to break down almost completely in the system. PET generated numerous products that distributed predominantly into the aqueous phase; the major decomposition product of nylon-6 was found to be the monomer ∊-caprolactam, also largely partitioning into the aqueous phase. The polyolefins were less reactive; a limited degree of decomposition formed oxidised products, which distributed into the bio-crude phase. This result represents a highly promising method for waste plastic valorisation.


Subject(s)
Pistacia , Refuse Disposal , Biofuels , Biomass , Food , Plastics , Spectroscopy, Fourier Transform Infrared , Temperature , Water
9.
Biotechnol Bioeng ; 116(12): 3200-3214, 2019 12.
Article in English | MEDLINE | ID: mdl-31429929

ABSTRACT

Microbial lipids have the potential to displace terrestrial oils for fuel, value chemical, and food production, curbing the growth in tropical oil plantations and helping to reduce deforestation. However, commercialization remains elusive partly due to the lack of suitably robust organisms and their low lipid productivity. Extremely high cell densities in oleaginous cultures are needed to increase reaction rates, reduce reactor volume, and facilitate downstream processing. In this investigation, the oleaginous yeast Metschnikowia pulcherrima, a known antimicrobial producer, was cultured using four different processing strategies to achieve high cell densities and gain suitable lipid productivity. In batch mode, the yeast demonstrated lipid contents more than 40% (w/w) under high osmotic pressure. In fed-batch mode, however, high-lipid titers were prevented through inhibition above 70.0 g L-1 yeast biomass. Highly promising were a semi-continuous and continuous mode with cell recycle where cell densities of up to 122.6 g L-1 and maximum lipid production rates of 0.37 g L-1 h-1 (daily average), a nearly two-fold increase from the batch, were achieved. The findings demonstrate the importance of considering multiple fermentation modes to achieve high-density oleaginous yeast cultures generally and indicate the limitations of processing these organisms under the extreme conditions necessary for economic lipid production.


Subject(s)
Batch Cell Culture Techniques , Lipids , Metschnikowia , Lipids/biosynthesis , Lipids/chemistry , Lipids/isolation & purification , Metschnikowia/chemistry , Metschnikowia/growth & development
10.
Dalton Trans ; 47(4): 1189-1201, 2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29292457

ABSTRACT

This work demonstrates the potential of zeolite Y supported nickel phosphide materials as highly active catalysts for the upgrading of bio-oil as an improved alternative to noble metal and transition metal sulphide systems. Our systematic work studied the effect of using different counterions (NH4+, H+, K+ and Na+) and Si/Al ratios (2.56 and 15) of the zeolite Y. It demonstrates that whilst the zeolite counterion itself has little impact on the catalytic activity of the bare Y-zeolite, it has a strong influence on the activity of the resulting nickel phosphide catalysts. This effect is related to the nature of the nickel phases formed during the synthesis process Zeolites containing K+ and Na+ favour the formation of a mixed Ni12P5/Ni2P phase, H+ Y produces both Ni2P and metallic Ni, whereas NH4+ Y produces pure Ni2P, which can be attributed to the strength of the phosphorus-aluminium interaction and the metal reduction temperature. Using quinoline as a model for the nitrogen-containing compounds in bio-oils, it is shown that the hydrodenitrogenation activity increases in the order Ni2P > Ni0 > Ni12P5. While significant research has been dedicated to the development of bio-oils produced by thermal liquefaction of biomass, surprisingly little work has been conducted on the subsequent catalytic upgrading of these oils to reduce their heteroatom content and enable processing in conventional petrochemical refineries. This work provides important insights for the design and deployment of novel active transition metal catalysts to enable the incorporation of bio-oils into refineries.


Subject(s)
Microalgae/chemistry , Nickel/chemistry , Nitrogen/chemistry , Phosphites/chemistry , Plant Oils , Polyphenols , Quinolines/chemistry , Zeolites/chemistry , Catalysis , Temperature , Water/chemistry
11.
Faraday Discuss ; 202: 351-370, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28665433

ABSTRACT

Generally, biorefineries convert lignocellulosic biomass into a range of biofuels and further value added chemicals. However, conventional biorefinery processes focus mainly on the cellulose and hemicellulose fractions and therefore produce only low quality lignin, which is commonly burnt to provide process heat. To make full use of the biomass, more attention needs to be focused on novel separation techniques, where high quality lignin can be isolated that is suitable for further valorisation into aromatic chemicals and fuel components. In this paper, three types of lignocellulosic biomass (softwood, hardwood and herbaceous biomass) were processed by microwave-assisted acidolysis to produce high quality lignin. The lignin from the softwood was isolated largely intact in the solid residue after acidolysis. For example, a 10 min microwave-assisted acidolysis treatment produced lignin with a purity of 93% and in a yield of 82%, which is superior to other conventional separation methods reported. Furthermore, py-GC/MS analysis proved that the isolated lignin retained the original structure of native lignin in the feedstock without severe chemical modification. This is a large advantage, and the purified lignin is suitable for further chemical processing. To assess the suitability of this methodology as part of a biorefinery system, the aqueous phase, produced after acidolysis of the softwood, was characterised and assessed for its suitability for fermentation. The broth contained some mono- and di-saccharides but mainly contained organic acids, oligosaccharides and furans. While this is unsuitable for S. cerevisiae and other common ethanol producing yeasts, two oleaginous yeasts with known inhibitor tolerances were selected: Cryptococcus curvatus and Metschnikowia pulcherrima. Both yeasts could grow on the broth, and demonstrated suitable catabolism of the oligosaccharides and inhibitors over 7 days. In addition, both yeasts were shown to be able to produce an oil with a similar composition to that of palm oil. This preliminary work demonstrates new protocols of microwave-assisted acidolysis and therefore offers an effective approach to produce high purity lignin and fermentable chemicals, which is a key step towards developing a zero-waste lignocellulosic biorefinery.


Subject(s)
Lignin/biosynthesis , Microwaves , Oligosaccharides/biosynthesis , Biomass , Fermentation , Lignin/analogs & derivatives , Lignin/chemistry , Oligosaccharides/chemistry , Temperature
12.
ChemSusChem ; 9(9): 922-31, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27099975

ABSTRACT

Interest in developing renewable fuels is continuing to grow and biomass represents a viable source of renewable carbon with which to replace fossil-based components in transportation fuels. During our own work, we noticed that chemists think in terms of functional groups whereas fuel engineers think in terms of physical fuel properties. In this Concept article, we discuss the effect of carbon and oxygen functional groups on potential fuel properties. This serves as a way of informing our own thinking and provides us with a basis with which to design and synthesize molecules from biomass that could provide useful transportation fuels.


Subject(s)
Biofuels , Biomass , Carbon/chemistry , Oxygen/chemistry
13.
Bioresour Technol ; 207: 166-74, 2016 May.
Article in English | MEDLINE | ID: mdl-26881334

ABSTRACT

A polyhydroxybutyrate (PHB) producing cyanobacteria was converted through hydrothermal liquefaction (HTL) into propylene and a bio-oil suitable for advanced biofuel production. HTL of model compounds demonstrated that in contrast to proteins and carbohydrates, no synergistic effects were detected when converting PHB in the presence of algae. Subsequently, Synechocystis cf. salina, which had accumulated 7.5wt% PHB was converted via HTL (15% dry weight loading, 340°C). The reaction gave an overall propylene yield of 2.6%, higher than that obtained from the model compounds, in addition to a bio-oil with a low nitrogen content of 4.6%. No propylene was recovered from the alternative non-PHB producing cyanobacterial strains screened, suggesting that PHB is the source of propylene. PHB producing microorganisms could therefore be used as a feedstock for a biorefinery to produce polypropylene and advanced biofuels, with the level of propylene being proportional to the accumulated amount of PHB.


Subject(s)
Alkenes/metabolism , Biofuels/microbiology , Biotechnology/methods , Butyrates/metabolism , Cyanobacteria/metabolism , Oils/metabolism , Polyesters/metabolism , Temperature , Water/pharmacology , Biomass , Cyanobacteria/drug effects , Gases/chemistry , Spirulina/drug effects , Spirulina/metabolism
14.
Biotechnol Biofuels ; 7(1): 34, 2014 03 04.
Article in English | MEDLINE | ID: mdl-24593824

ABSTRACT

BACKGROUND: The yeast Metschnikowia pulcherrima, previously utilised as a biological control agent, was evaluated for its potential to produce lipids for biofuel production. RESULTS: Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH and to produce natural antimicrobial compounds. Although not previously classified as oleaginous, a combination of low temperature and restricted nutrient availability triggered high levels of oil production in M. pulcherrima cultures. This regime was designed to trigger the sporulation process but prevent its completion to allow the accumulation of a subset of a normally transitional, but oil-rich, 'pulcherrima' cell type. This approach resulted in yields of up to 40% lipid, which compares favourably with other oleaginous microbes. We also demonstrate that M. pulcherrima metabolises glycerol and a diverse range of other sugars, suggesting that heterogeneous biomass could provide a suitable carbon source. M. pulcherrima also grows well in a minimal media containing no yeast extract. Finally, we demonstrate the potential of the yeast to produce lipids inexpensively on an industrial scale by culturing the yeast in a 500 L, open air, tank reactor without any significant contamination. CONCLUSIONS: The production of antimicrobial compounds coupled to efficient growth at low temperature and pH enables culture of this oleaginous yeast in inexpensive, non-sterile conditions providing a potential route to economic biofuel production.

16.
Inorg Chem ; 52(19): 10804-11, 2013 Oct 07.
Article in English | MEDLINE | ID: mdl-24063350

ABSTRACT

A series of N,N,N',N'-tetrakis(2-hydroxyethyl)ethylenediamine (TOEEDH4) ligand precursors and their group 4 metal complexes have been prepared. The complexes have been characterized by single-crystal X-ray diffraction and (1)H NMR spectroscopy, highlighting the ability to systematically vary the number of TOEED ligands within the system. Initial catalytic data for the solvent-free, ring-opening polymerization of rac-lactide (rac-LA), a promising degradable polymer produced from renewable resources, is reported. At 135 °C, it has been demonstrated that the activity of the complexes is enhanced by increasing the number of labile isopropoxide groups. When the temperature was further increased to 165 °C, all complexes demonstrated a far higher activity irrespective of the identity of the metal or number of labile initiator groups. Polymerization kinetics were monitored in real time using FT-IR spectroscopy with a diamond composite insertion probe and Ti4(TOEED)(O(i)Pr)12 was demonstrated to convert over 95% of the rac-LA within 160 min.


Subject(s)
Coordination Complexes/chemical synthesis , Diamines/chemistry , Dioxanes/chemistry , Ethylenes/chemistry , Titanium/chemistry , Zirconium/chemistry , Coordination Complexes/chemistry , Crystallography, X-Ray , Ligands , Magnetic Resonance Spectroscopy , Polymerization , Spectroscopy, Fourier Transform Infrared
17.
Bioresour Technol ; 143: 549-54, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23831897

ABSTRACT

In this investigation ozonolysis in the presence of ethanol was used to depolymerise lignin, resulting in a low conversion of oxygenated aromatics over short reaction times, or a range of saturated esters over 24 h. Short chain oxygenates can be used as fuel additives, displacing a percentage of a hydrocarbon fuel while leading to improvement in some of the fuel properties. The utility of the resulting bio-oils was therefore assessed by blending with a range of fuels. Guaiacol, a potential antioxidant, was formed over short reaction times and was found to be completely miscible with low-sulphur petrol (ULSP), diesel, aviation kerosene and rapeseed methyl ester. The mainly aliphatic proportion of the bio-oil produced over 24 h could be blended with the fuels replacing a maximum of 12-17 wt.% of the hydrocarbon fuel.


Subject(s)
Biofuels , Lignin/chemistry , Ozone/chemistry
18.
AMB Express ; 3(1): 9, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23369619

ABSTRACT

The extensive diversity of microalgae provides an opportunity to undertake bioprospecting for species possessing features suited to commercial scale cultivation. The outdoor cultivation of microalgae is subject to extreme temperature fluctuations; temperature tolerant microalgae would help mitigate this problem. The waters of the Roman Baths, which have a temperature range between 39°C and 46°C, were sampled for microalgae. A total of 3 green algae, 1 diatom and 4 cyanobacterial species were successfully isolated into 'unialgal' culture. Four isolates were filamentous, which could prove advantageous for low energy dewatering of cultures using filtration.Lipid content, profiles and growth rates of the isolates were examined at temperatures of 20, 30, 40°C, with and without nitrogen starvation and compared against the oil producing green algal species, Chlorella emersonii. Some isolates synthesized high levels of lipids, however, all were most productive at temperatures lower than those of the Roman Baths. The eukaryotic algae accumulated a range of saturated and polyunsaturated FAMEs and all isolates generally showed higher lipid accumulation under nitrogen deficient conditions (Klebsormidium sp. increasing from 1.9% to 16.0% and Hantzschia sp. from 31.9 to 40.5%). The cyanobacteria typically accumulated a narrower range of FAMEs that were mostly saturated, but were capable of accumulating a larger quantity of lipid as a proportion of dry weight (M. laminosus, 37.8% fully saturated FAMEs). The maximum productivity of all the isolates was not determined in the current work and will require further effort to optimise key variables such as light intensity and media composition.

20.
Inorg Chem ; 45(17): 6595-7, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-16903711

ABSTRACT

An air-stable titanium-organic framework, prepared from Ti(OiPr)4 and 1,4-butanediol, has been characterized via single-crystal X-ray diffraction, revealing a unique supramolecular structure. Its functionality as a highly active initiator for the ring-opening polymerization of cyclic esters is demonstrated. A discrete titanium trimer containing the related ligand (2R,3R)-2,3-butanediol has also been prepared, and it shows analogous activity as a polymerization initiator.

SELECTION OF CITATIONS
SEARCH DETAIL
...