Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 94(6)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37862522

ABSTRACT

We have developed experimental equipment for observing the Barnett effect, in which mechanical rotation magnetizes an object, at low temperatures. A sample in a rotor is rotated bidirectionally using a temperature-controlled high-pressure gas. The stray field generated from the sample due to the Barnett effect was detected using a fluxgate magnetic sensor with a sensitivity on the order of several picoteslas, even at low temperatures. By replacing the rotor with a solenoid coil, the magnetic susceptibility of the sample was estimated from the stray field to be of the same order of magnitude as that due to the Barnett effect. The Barnett field was estimated using the dipole model. To assess the performance of the setup at low temperatures, measurements were performed on commercial magnetite (Fe3O4) nanogranules. We confirmed the accordance of the g' factor between the experimental results using the present setup and those of our previous study performed at room temperature.

2.
Nat Commun ; 10(1): 2616, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31197177

ABSTRACT

Electric current has been used to send electricity to far distant places. On the other hand, spin current, a flow of electron spin, can in principle also send angular momentum to distant places. In a magnet, there is a universal spin carrier called a spin wave, a wave-type excitation of magnetization. Since spin waves exhibit a long propagation length, it should be able to send angular momentum that can generate torque and force at a distant place: a new function of magnets. Here we observe mechanical angular momentum transmission and force generation due to spin waves injected into Y3Fe5O12 by the spin-Seebeck effect. The spin-wave current, transmitted through a Y3Fe5O12 micro cantilever, was found to create a mechanical force on the cantilever as a non-local reaction of the spin-Seebeck effect. Spin-wave current can be generated remotely even in open circuits, and it can be used to drive micro mechanical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...