Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 124(19): 191101, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32469588

ABSTRACT

We study the equation of state (EOS) of an accreting neutron star crust. Usually, such an EOS is obtained by assuming (implicitly) that the free (unbound) neutrons and nuclei in the inner crust move together. We argue that this assumption violates the condition µ_{n}^{∞}=const, required for hydrostatic (and diffusion) equilibrium of unbound neutrons (µ_{n}^{∞} is the redshifted neutron chemical potential). We construct a new EOS respecting this condition, working in the compressible liquid-drop approximation. We demonstrate that it is close to the catalyzed EOS in most of the inner crust, being very different from EOSs of accreted crust discussed in the literature. In particular, the pressure at the outer-inner crust interface does not coincide with the neutron drip pressure, usually calculated in the literature, and is determined by hydrostatic (and diffusion) equilibrium conditions within the star. We also find an instability at the bottom of the fully accreted crust that transforms nuclei into homogeneous nuclear matter. It guarantees that the structure of the fully accreted crust remains self-similar during accretion.

2.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(4 Pt 2): 047401, 2009 Oct.
Article in English | MEDLINE | ID: mdl-19905488

ABSTRACT

Recently developed analytic approximation for the equation of state of fully ionized nonideal electron-ion plasma mixtures [A. Y. Potekhin, G. Chabrier, and F. J. Rogers, Phys. Rev. E 79, 016411 (2009)], which covers the transition between the weak and strong Coulomb coupling regimes and reproduces numerical results obtained in the hypernetted-chain (HNC) approximation, is modified in order to fit the small deviations from the linear mixing in the strong-coupling regime, revealed by recent Monte Carlo simulations. In addition, a mixing rule is proposed for the regime of weak coupling, which generalizes post-Debye density corrections to the case of mixtures and numerically agrees with the HNC approximation in that regime.


Subject(s)
Algorithms , Complex Mixtures/chemistry , Gases/chemistry , Hot Temperature , Models, Chemical , Rheology/methods , Static Electricity , Computer Simulation
SELECTION OF CITATIONS
SEARCH DETAIL
...