Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38930321

ABSTRACT

Trembling aspen (Populus tremuloides) is one of the major species within Populus, a predominant genus of hardwoods in North America. However, its utilization has been limited to pulp and paper or wood-based composite boards. This study aimed at evaluating the major physical and mechanical properties of trembling aspen lumber, with an ultimate objective of using this species to produce engineered wood products (EWPs). The testing materials consisted of 2 × 4 (38 mm × 89 mm) trembling aspen lumber pieces in lengths of 8, 10, and 12 feet (2.44, 3.05, and 3.66 m) with two visual grades, select structural (SS) and No. 2. Machine Stress-Rated (MSR), and longitudinal stress wave (LSW), edgewise third-point bending (EWB), and axial tension tests were conducted on the lumber. It was found that, (1) by increasing the maximum knot size by a half-inch from one-quarter inch, the minimum modulus of elasticity (MOE) measured using the MSR, the mean, and the fifth-percentile ultimate tensile strength (UTS) decreased by about 8.8%, 20.1%, and 29.8%, respectively. (2) Approximately 44% of the trembling aspen lumber met the 1450f-1.3E grade for MSR lumber, and 62% qualified for the 1200f-1.2E grade. (3) There was a great potential for manufacturing cross-laminated timber (CLT) of grade E3, with a rejection rate of about 29%. (4) The mean UTS and MOE values of the SS-grade trembling aspen lumber were 22.88 MPa and 9519 MPa, respectively, being 25.5% and 11.3% lower than that of Spruce-Pine-Fir (S-P-F) lumber. The fifth-percentile UTS and MOE values were 11.57 MPa and 7404 MPa, respectively, marking a decrease of 13.3% and 1.5% compared to the S-P-F lumber. (5) The oven-dried specific gravity (SG) of the trembling aspen wood was 0.40, which was about 3.5% larger than the value provided in the Wood Handbook.

2.
Materials (Basel) ; 15(21)2022 Oct 24.
Article in English | MEDLINE | ID: mdl-36363052

ABSTRACT

Panelized fabrication of light-frame wood buildings has higher productivity than the traditional stick-built method. However, the roof production process is not very efficient due to the structural system and construction method. This study proposes a novel apex connection that allows for a folding mechanism in a panelized light wood frame roof system. Proof of concept of the proposed connection assembly is presented by a 3D printout of the developed connection. Following the steel design code and timber code, the initial estimation of different parameters, such as the pinhole diameter and number screws, were established. A detailed finite element analysis (FEA) was performed to determine the connection strength requirement for different load case scenarios. The results of the FEA and 3D printout of the assembly show that the proposed connection can provide the required folding mechanism before roof installation and can withstand the load in the unfolding state at service.

SELECTION OF CITATIONS
SEARCH DETAIL
...