Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Lett ; 22(4): 748-763, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30687988

ABSTRACT

To understand and forecast biological responses to climate change, scientists frequently use field experiments that alter temperature and precipitation. Climate manipulations can manifest in complex ways, however, challenging interpretations of biological responses. We reviewed publications to compile a database of daily plot-scale climate data from 15 active-warming experiments. We find that the common practices of analysing treatments as mean or categorical changes (e.g. warmed vs. unwarmed) masks important variation in treatment effects over space and time. Our synthesis showed that measured mean warming, in plots with the same target warming within a study, differed by up to 1.6  ∘ C (63% of target), on average, across six studies with blocked designs. Variation was high across sites and designs: for example, plots differed by 1.1  ∘ C (47% of target) on average, for infrared studies with feedback control (n = 3) vs. by 2.2  ∘ C (80% of target) on average for infrared with constant wattage designs (n = 2). Warming treatments produce non-temperature effects as well, such as soil drying. The combination of these direct and indirect effects is complex and can have important biological consequences. With a case study of plant phenology across five experiments in our database, we show how accounting for drier soils with warming tripled the estimated sensitivity of budburst to temperature. We provide recommendations for future analyses, experimental design, and data sharing to improve our mechanistic understanding from climate change experiments, and thus their utility to accurately forecast species' responses.


Subject(s)
Climate Change , Soil , Plants , Temperature
2.
Plant Biol (Stuttg) ; 20(3): 450-455, 2018 May.
Article in English | MEDLINE | ID: mdl-29350475

ABSTRACT

Tree species distribution, and hence forest biodiversity, relies on the reproductive capacity of trees, which is currently affected by climate change. Drought-induced pollen sterility could increase as a consequence of more intense and more frequent droughts projected for temperate and Mediterranean regions, and threaten the sexual regeneration of trees in these regions. To evaluate this possibility, we examined the effect of long-term partial rainfall exclusion (-27% precipitation) on male reproductive development in holm oak, Quercus ilex, one of the most important and widespread tree species of the Mediterranean region. We examined anther area, pollen production, pollen abortion as well as viable pollen production in control and dry treatments. Microscopic examinations revealed significant differences in pollen development between trees in the dry and the control treatments, even though anthesis occurred before the onset of annual drought. Our results demonstrate that anthers collected from Q. ilex trees in the dry treatment, which experienced long-term increased drought stress especially during the summer, were the same size as anthers in the control treatment, but displayed 25% pollen abortion and almost 20% reduction in pollen production. Subsequently, the number of viable pollen grains in anthers from dry treatment was 35% less than in control. These results suggest a carry-over effect of drought stress on pollen production that could reduce the reproductive success of Q. ilex. The results have broad implications for better understanding of the determinants of tree reproduction by masting and anticipate the outcomes of expected drought increase in the Mediterranean on forest dynamics.


Subject(s)
Pollen/growth & development , Quercus/growth & development , Dehydration , Flowers/growth & development , Flowers/ultrastructure , Pollen/ultrastructure
3.
J Theor Biol ; 207(3): 337-47, 2000 Dec 07.
Article in English | MEDLINE | ID: mdl-11082304

ABSTRACT

Accurate plant phenology (seasonal plant activity driven by environmental factors) models are vital tools for ecosystem simulation models and for predicting the response of ecosystems to climate change. Since the early 1970s, efforts have concentrated on predicting phenology of the temperate and boreal forests because they represent one-third of the carbon captured in plant ecosystems and they are the principal ecosystems with seasonal patterns of growth on Earth (one-fifth of the plant ecosystems area). Numerous phenological models have been developed to predict the growth timing of temperate or boreal trees. They are in general empirical, nonlinear and non-nested. For these reasons they are particularly difficult to fit, to test and to compare with each other. The methodological difficulties as well as the diversity of models used have greatly slowed down their improvement. The aim of this study was to show that the most widely used models simulating vegetative or reproductive phenology of trees are particular cases of a more general model. This unified model has three main advantages. First, it allows for a direct estimation of (i) the response of bud growth to either chilling or forcing temperatures and (ii) the periods when these temperatures affect the bud growth. Second, it can be simplified according to standard statistical tests for any particular species. Third, it provides a standardized framework for phenological models, which is essential for comparative studies as well as for robust model identification.


Subject(s)
Ecosystem , Models, Biological , Trees/growth & development , Environment , Species Specificity , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...