Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Behav Res Methods ; 52(3): 1026-1043, 2020 06.
Article in English | MEDLINE | ID: mdl-31712999

ABSTRACT

Here we propose the eye movement analysis with switching hidden Markov model (EMSHMM) approach to analyzing eye movement data in cognitive tasks involving cognitive state changes. We used a switching hidden Markov model (SHMM) to capture a participant's cognitive state transitions during the task, with eye movement patterns during each cognitive state being summarized using a regular HMM. We applied EMSHMM to a face preference decision-making task with two pre-assumed cognitive states-exploration and preference-biased periods-and we discovered two common eye movement patterns through clustering the cognitive state transitions. One pattern showed both a later transition from the exploration to the preference-biased cognitive state and a stronger tendency to look at the preferred stimulus at the end, and was associated with higher decision inference accuracy at the end; the other pattern entered the preference-biased cognitive state earlier, leading to earlier above-chance inference accuracy in a trial but lower inference accuracy at the end. This finding was not revealed by any other method. As compared with our previous HMM method, which assumes no cognitive state change (i.e., EMHMM), EMSHMM captured eye movement behavior in the task better, resulting in higher decision inference accuracy. Thus, EMSHMM reveals and provides quantitative measures of individual differences in cognitive behavior/style, making a significant impact on the use of eyetracking to study cognitive behavior across disciplines.


Subject(s)
Eye Movements , Face , Humans , Individuality , Markov Chains , Probability
2.
Cognition ; 169: 102-117, 2017 12.
Article in English | MEDLINE | ID: mdl-28869811

ABSTRACT

It remains controversial whether culture modulates eye movement behavior in face recognition. Inconsistent results have been reported regarding whether cultural differences in eye movement patterns exist, whether these differences affect recognition performance, and whether participants use similar eye movement patterns when viewing faces from different ethnicities. These inconsistencies may be due to substantial individual differences in eye movement patterns within a cultural group. Here we addressed this issue by conducting individual-level eye movement data analysis using hidden Markov models (HMMs). Each individual's eye movements were modeled with an HMM. We clustered the individual HMMs according to their similarities and discovered three common patterns in both Asian and Caucasian participants: holistic (looking mostly at the face center), left-eye-biased analytic (looking mostly at the two individual eyes in addition to the face center with a slight bias to the left eye), and right-eye-based analytic (looking mostly at the right eye in addition to the face center). The frequency of participants adopting the three patterns did not differ significantly between Asians and Caucasians, suggesting little modulation from culture. Significantly more participants (75%) showed similar eye movement patterns when viewing own- and other-race faces than different patterns. Most importantly, participants with left-eye-biased analytic patterns performed significantly better than those using either holistic or right-eye-biased analytic patterns. These results suggest that active retrieval of facial feature information through an analytic eye movement pattern may be optimal for face recognition regardless of culture.


Subject(s)
Culture , Eye Movements/physiology , Facial Recognition/physiology , Adolescent , Adult , Asian People , Female , Humans , Male , Markov Chains , White People , Young Adult
3.
Vision Res ; 141: 204-216, 2017 12.
Article in English | MEDLINE | ID: mdl-28435123

ABSTRACT

The hidden Markov model (HMM)-based approach for eye movement analysis is able to reflect individual differences in both spatial and temporal aspects of eye movements. Here we used this approach to understand the relationship between eye movements during face learning and recognition, and its association with recognition performance. We discovered holistic (i.e., mainly looking at the face center) and analytic (i.e., specifically looking at the two eyes in addition to the face center) patterns during both learning and recognition. Although for both learning and recognition, participants who adopted analytic patterns had better recognition performance than those with holistic patterns, a significant positive correlation between the likelihood of participants' patterns being classified as analytic and their recognition performance was only observed during recognition. Significantly more participants adopted holistic patterns during learning than recognition. Interestingly, about 40% of the participants used different patterns between learning and recognition, and among them 90% switched their patterns from holistic at learning to analytic at recognition. In contrast to the scan path theory, which posits that eye movements during learning have to be recapitulated during recognition for the recognition to be successful, participants who used the same or different patterns during learning and recognition did not differ in recognition performance. The similarity between their learning and recognition eye movement patterns also did not correlate with their recognition performance. These findings suggested that perceptuomotor memory elicited by eye movement patterns during learning does not play an important role in recognition. In contrast, the retrieval of diagnostic information for recognition, such as the eyes for face recognition, is a better predictor for recognition performance.


Subject(s)
Attention/physiology , Eye Movements/physiology , Facial Recognition/physiology , Learning , Recognition, Psychology/physiology , Adult , Female , Humans , Male , Markov Chains , Young Adult
4.
J Vis ; 14(11)2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25228627

ABSTRACT

We use a hidden Markov model (HMM) based approach to analyze eye movement data in face recognition. HMMs are statistical models that are specialized in handling time-series data. We conducted a face recognition task with Asian participants, and model each participant's eye movement pattern with an HMM, which summarized the participant's scan paths in face recognition with both regions of interest and the transition probabilities among them. By clustering these HMMs, we showed that participants' eye movements could be categorized into holistic or analytic patterns, demonstrating significant individual differences even within the same culture. Participants with the analytic pattern had longer response times, but did not differ significantly in recognition accuracy from those with the holistic pattern. We also found that correct and wrong recognitions were associated with distinctive eye movement patterns; the difference between the two patterns lies in the transitions rather than locations of the fixations alone.


Subject(s)
Eye Movements/physiology , Face/physiology , Pattern Recognition, Visual/physiology , Recognition, Psychology/physiology , Adolescent , Female , Humans , Male , Markov Chains , Models, Statistical , Probability , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...