Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 200: 116164, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38364645

ABSTRACT

The study presents the results of the survey of beached litter on the two opposite shores of the Fields Peninsula (King George Island) conducted during the austral summer seasons of 2022 and 2023, as part of the 67th and 68th Russian Antarctic expeditions. Beaches situated on the coast of the Drake Passage were much more polluted compared to the beaches on the Maxwell Bay side. Plastic accounted for 86 % of all found items on the shores of the Drake Passage, with the majority of items related to fisheries or shipping. On the Maxwell Bay beaches, only 36 % of litter was plastic, with other categories like wood and metal dominating the total number. The average density of marine litter is 0.32 items/m (0.017 items/m2), comparable to other similar surveys conducted on Antarctic islands; however, this is at least 15-20 times lower than beach litter densities in the Arctic.


Subject(s)
Environmental Monitoring , Waste Products , Waste Products/analysis , Antarctic Regions , Environmental Monitoring/methods , Plastics , Wood/chemistry , Bathing Beaches
2.
Mar Pollut Bull ; 199: 115959, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38154169

ABSTRACT

In the extraordinary weather conditions of the austral summer of 2023, fossil mosses thawed out from under the Bellingshausen Ice Dome, King George Island, Southern Shetland Archipelago of maritime Antarctica. At the end of the austral summer, we directly measured greenhouse gas fluxes (CH4 and CO2) from the surface of fossil mosses. We showed that fossil mosses were strong emitters of CH4 and weak emitters of CO2. The real-time measured CH4 emissions reached 0.173 µmol m-2 s-1, which is comparable to CH4 efflux in water bodies or wet tundra in the Arctic.


Subject(s)
Bryophyta , Methane , Antarctic Regions , Ice Cover , Carbon Dioxide/analysis , Fossils
3.
Animals (Basel) ; 13(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37443865

ABSTRACT

Climate changes cause a dramatical increase in the ice-free season in the Arctic, forcing polar bears ashore, closer to human settlements associated with new and non-natural food objects. Such a diet may crucially transform the intestinal microbiome and metabolism of polar bears. The aim of this study was to characterize changes in the gut bacterial and fungal communities resulting from the transition to anthropogenic food objects by the means of 16S and ITS metabarcoding. Thus, rectal samples from 16 wild polar bears from the Kara-Barents subpopulation were studied. Human waste consuming resulted in a significant increase in the relative abundance of fermentative bacteria (Lactobacillaceae, Leuconostocaceae, and Streptococcaceae) and a decrease in proteolytic Enterobacteriaceae. However, the alpha-diversity parameters remained similar. Also, for the first time, the composition of the fungal community of the polar bear intestine was determined. Diet change is associated with the displacement of eurybiontic fungi (Thelebolus, Dipodascus, Candida (sake), and Geotrichum) by opportunistic Candida (tropicalis), Kazachstania, and Trichosporon. Feeding on human waste does not cause any signs of dysbiosis and probably leads to adaptive changes in the bacterial microbiome. However, the emergence of fungal facultative pathogens increases the risk of infections.

SELECTION OF CITATIONS
SEARCH DETAIL
...