Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Brain Sci ; 14(6)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38928573

ABSTRACT

Aging contributes significantly to cognitive decline. Aerobic exercise (AE) has been shown to induce substantial neuroplasticity changes, enhancing cognitive and brain health. Likewise, recent research underscores the cognitive benefits of foreign language learning (FLL), indicating improvements in brain structure and function across age groups. However, the lack of a comprehensive paradigm integrating language learning with exercise limits research on combined effects in older adults. In order to address this gap, we devised a novel approach using a virtual world tourism scenario for auditory-based language learning combined with aerobic cycling. Our study examines the impact of simultaneous AE and FLL integration on cognitive and language learning outcomes compared to FLL alone. A total of 20 older adults were randomly assigned to AE + FLL and FLL-only groups. The results revealed significantly improved Spanish language learning outcomes in both combined and language learning-only groups. Additionally, significant cognitive function improvement was observed in the FLL group following short-term language learning.

2.
Hum Factors ; 65(2): 306-320, 2023 Mar.
Article in English | MEDLINE | ID: mdl-33908806

ABSTRACT

OBJECTIVE: We measured how long distraction by a smartphone affects simulated driving behaviors after the tasks are completed (i.e., the distraction hangover). BACKGROUND: Most drivers know that smartphones distract. Trying to limit distraction, drivers can use hands-free devices, where they only briefly glance at the smartphone. However, the cognitive cost of switching tasks from driving to communicating and back to driving adds an underappreciated, potentially long period to the total distraction time. METHOD: Ninety-seven 21- to 78-year-old individuals who self-identified as active drivers and smartphone users engaged in a simulated driving scenario that included smartphone distractions. Peripheral-cue and car-following tasks were used to assess driving behavior, along with synchronized eye tracking. RESULTS: The participants' lateral speed was larger than baseline for 15 s after the end of a voice distraction and for up to 25 s after a text distraction. Correct identification of peripheral cues dropped about 5% per decade of age, and participants from the 71+ age group missed seeing about 50% of peripheral cues within 4 s of the distraction. During distraction, coherence with the lead car in a following task dropped from 0.54 to 0.045, and seven participants rear-ended the lead car. Breadth of scanning contracted by 50% after distraction. CONCLUSION: Simulated driving performance drops dramatically after smartphone distraction for all ages and for both voice and texting. APPLICATION: Public education should include the dangers of any smartphone use during driving, including hands-free.


Subject(s)
Automobile Driving , Text Messaging , Humans , Young Adult , Adult , Middle Aged , Aged , Smartphone , Risk-Taking , Computer Simulation , Accidents, Traffic
3.
Article in English | MEDLINE | ID: mdl-35969548

ABSTRACT

Gaze behavior in dyadic conversations can indicate active listening and attention. However, gaze behavior that is different from the engagement expected during neurotypical social interaction cues may be interpreted as uninterested or inattentive, which can be problematic in both personal and professional situations. Neurodivergent individuals, such as those with autism spectrum conditions, often exhibit social communication differences broadly including via gaze behavior. This project aims to support situational social gaze practice through a virtual reality (VR) mock job interview practice using the HTC Vive Pro Eye VR headset. We show how gaze behavior varies in the mock job interview between neurodivergent and neurotypical participants. We also investigate the social modulation of gaze behavior based on conversational role (speaking and listening). Our three main contributions are: (i) a system for fully-automatic analysis of social modulation of gaze behavior using a portable VR headset with a novel realistic mock job interview, (ii) a signal processing pipeline, which employs Kalman filtering and spatial-temporal density-based clustering techniques, that can improve the accuracy of the headset's built-in eye-tracker, and (iii) being the first to investigate social modulation of gaze behavior among neurotypical/divergent individuals in the realm of immersive VR.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Virtual Reality , Attention , Fixation, Ocular , Humans
4.
Dev Sci ; 25(4): e13231, 2022 07.
Article in English | MEDLINE | ID: mdl-35005839

ABSTRACT

EEG microstates represent transient electrocortical events that reflect synchronized activities of large-scale networks, which allows investigations of brain dynamics with sub-second resolution. We recorded resting EEG from 38 children and adolescents with Autism Spectrum Development (ASD) and 48 age, IQ, sex, and handedness-matched typically developing (TD) participants. The EEG was segmented into a time series of microstates using modified k-means clustering of scalp voltage topographies. The frequency and global explained variance (GEV) of a specific microstate (type C) were significantly lower in the ASD group compared to the TD group while the duration of the same microstate was correlated with the presence of ASD-related behaviors. The duration of this microstate was also positively correlated with participant age in the TD group, but not in the ASD group. Further, the frequency and duration of the microstate were significantly correlated with the overall alpha power only in the TD group. The signal strength and GEV for another microstate (type G) was greater in the ASD group than the TD group, and the associated topographical pattern differed between groups with greater variations in the ASD group. While more work is needed to clarify the underlying neural sources, the existing literature supports associations between the two microstates and the default mode and salience networks. The current study suggests specific alterations of temporal dynamics of the resting cortical network activities as well as their developmental trajectories and relationships to alpha power, which has been proposed to reflect reduced neural inhibition in ASD.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Adolescent , Brain/physiology , Brain Mapping , Child , Electroencephalography , Humans , Rest
5.
Behav Brain Res ; 417: 113614, 2022 01 24.
Article in English | MEDLINE | ID: mdl-34606777

ABSTRACT

Spatial neglect is a common feature of right hemisphere damage in adults, but less is known about spatial inattention following early brain damage. We used a Posner-based cueing task to examine hemispatial neglect and aspects of attention in children with perinatal stroke in either left (LH) or right hemisphere (RH) and controls. A visual perception task assessed the speed of visual perception. A spatial attention cueing task (the E-task) measured the ability to discriminate the direction of a target stimulus ("E"), when presented on the left or right side of the screen. This task provided indices of performance for attention orienting, disengagement and reorienting. Children with LH lesions had slowed visual perception compared to controls. Children with RH lesions did not demonstrate similar deficits. On the E-task, groups with both LH and RH lesions demonstrated lower accuracy on both left and right sides compared to controls. Children with LH lesions also showed impaired attention orienting and disengagement on left and right sides compared to controls, while children with RH lesions were most impaired in orienting and disengagement on their contralesional side. Children with LH lesions demonstrated more extensive attentional deficits than children with RH lesions. These results suggest that development of spatial attention may require different neural networks than maintenance of attention.


Subject(s)
Perceptual Disorders/pathology , Reaction Time/physiology , Space Perception/physiology , Stroke/complications , Visual Perception/physiology , Adolescent , Child , Cues , Female , Functional Laterality/physiology , Humans , Male , Neuropsychological Tests
6.
Dev Neurobiol ; 78(5): 546-554, 2018 05.
Article in English | MEDLINE | ID: mdl-29218791

ABSTRACT

In addition to the social, communicative and behavioral symptoms that define the disorder, individuals with ASD have difficulty re-orienting attention quickly and accurately. Similarly, fast re-orienting saccadic eye movements are also inaccurate and more variable in both endpoint and timing. Atypical gaze and attention are among the earliest symptoms observed in ASD. Disruption of these foundation skills critically affects the development of higher level cognitive and social behavior. We propose that interventions aimed at these early deficits that support social and cognitive skills will be broadly effective. We conducted a pilot clinical trial designed to demonstrate the feasibility and preliminary efficacy of using gaze-contingent video games for low-cost in-home training of attention and eye movement. Eight adolescents with ASD participated in an 8-week training, with pre-, mid- and post-testing of eye movement and attention control. Six of the eight adolescents completed the 8 weeks of training and all six showed improvement in attention (orienting, disengagement) and eye movement control or both. All game systems remained intact for the duration of training and all participants could use the system independently. We delivered a robust, low-cost, gaze-contingent game system for home use that, in our pilot training sample, improved the attention orienting and eye movement performance of adolescent participants in 8 weeks of training. We are currently conducting a clinical trial to replicate these results and to examine what, if any, aspects of training transfer to more real-world tasks. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 78: 546-554, 2018.


Subject(s)
Attention , Autism Spectrum Disorder/rehabilitation , Eye Movements , Therapy, Computer-Assisted , Video Games , Adolescent , Child , Feasibility Studies , Female , Humans , Male , Neuropsychological Tests , Pilot Projects , Social Behavior , Spatial Behavior , Treatment Outcome
7.
Ann Clin Transl Neurol ; 4(7): 491-505, 2017 07.
Article in English | MEDLINE | ID: mdl-28695149

ABSTRACT

OBJECTIVE: No drug is yet approved to treat the core symptoms of autism spectrum disorder (ASD). Low-dose suramin was effective in the maternal immune activation and Fragile X mouse models of ASD. The Suramin Autism Treatment-1 (SAT-1) trial was a double-blind, placebo-controlled, translational pilot study to examine the safety and activity of low-dose suramin in children with ASD. METHODS: Ten male subjects with ASD, ages 5-14 years, were matched by age, IQ, and autism severity into five pairs, then randomized to receive a single, intravenous infusion of suramin (20 mg/kg) or saline. The primary outcomes were ADOS-2 comparison scores and Expressive One-Word Picture Vocabulary Test (EOWPVT). Secondary outcomes were the aberrant behavior checklist, autism treatment evaluation checklist, repetitive behavior questionnaire, and clinical global impression questionnaire. RESULTS: Blood levels of suramin were 12 ± 1.5 µmol/L (mean ± SD) at 2 days and 1.5 ± 0.5 µmol/L after 6 weeks. The terminal half-life was 14.7 ± 0.7 days. A self-limited, asymptomatic rash was seen, but there were no serious adverse events. ADOS-2 comparison scores improved by -1.6 ± 0.55 points (n = 5; 95% CI = -2.3 to -0.9; Cohen's d = 2.9; P = 0.0028) in the suramin group and did not change in the placebo group. EOWPVT scores did not change. Secondary outcomes also showed improvements in language, social interaction, and decreased restricted or repetitive behaviors. INTERPRETATION: The safety and activity of low-dose suramin showed promise as a novel approach to treatment of ASD in this small study.

8.
Int Rev Neurobiol ; 113: 207-49, 2013.
Article in English | MEDLINE | ID: mdl-24290387

ABSTRACT

The earliest observable symptoms of autism spectrum disorders (ASDs) involve motor behavior. There is a growing awareness of the developmental importance of impaired motor function in ASD and its association with social skill. Compromised motor function requires increased attention, leaving fewer resources available for processing environmental stimuli and learning. This knowledge suggests that the motor system-which we know to be trainable-may be a gateway to improving outcomes of individuals living with ASD. In this review, we suggest a framework borrowed from machine learning to examine where, why, and how motor skills are different in individuals with ASD.


Subject(s)
Brain/pathology , Child Development Disorders, Pervasive/complications , Child Development Disorders, Pervasive/pathology , Motor Skills Disorders/etiology , Brain/physiopathology , Humans
9.
Proc Natl Acad Sci U S A ; 110 Suppl 2: 10438-45, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23754404

ABSTRACT

Survival depends on successfully foraging for food, for which evolution has selected diverse behaviors in different species. Humans forage not only for food, but also for information. We decide where to look over 170,000 times per day, approximately three times per wakeful second. The frequency of these saccadic eye movements belies the complexity underlying each individual choice. Experience factors into the choice of where to look and can be invoked to rapidly redirect gaze in a context and task-appropriate manner. However, remarkably little is known about how individuals learn to direct their gaze given the current context and task. We designed a task in which participants search a novel scene for a target whose location was drawn stochastically on each trial from a fixed prior distribution. The target was invisible on a blank screen, and the participants were rewarded when they fixated the hidden target location. In just a few trials, participants rapidly found the hidden targets by looking near previously rewarded locations and avoiding previously unrewarded locations. Learning trajectories were well characterized by a simple reinforcement-learning (RL) model that maintained and continually updated a reward map of locations. The RL model made further predictions concerning sensitivity to recent experience that were confirmed by the data. The asymptotic performance of both the participants and the RL model approached optimal performance characterized by an ideal-observer theory. These two complementary levels of explanation show how experience in a novel environment drives visual search in humans and may extend to other forms of search such as animal foraging.


Subject(s)
Models, Biological , Problem Solving/physiology , Problem-Based Learning , Visual Perception/physiology , Animals , Female , Humans , Male
11.
J Neurophysiol ; 102(6): 3225-33, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19776359

ABSTRACT

Retinal image motion is produced with each eye movement, yet we usually do not perceive this self-produced "reafferent" motion, nor are motion judgments much impaired when the eyes move. To understand the neural mechanisms involved in processing reafferent motion and distinguishing it from the motion of objects in the world, we studied the visual responses of single cells in middle temporal (MT) and medial superior temporal (MST) areas during steady fixation and smooth-pursuit eye movements in awake, behaving macaques. We measured neuronal responses to random-dot patterns moving at different speeds in a stimulus window that moved with the pursuit target and the eyes. This allowed us to control retinal image motion at all eye velocities. We found the expected high proportion of cells selective for the direction of visual motion. Pursuit tracking changed both response amplitude and preferred retinal speed for some cells. The changes in preferred speed were on average weakly but systematically related to the speed of pursuit for area MST cells, as would be expected if the shifts in speed selectivity were compensating for reafferent input. In area MT, speed tuning did not change systematically during pursuit. Many cells in both areas also changed response amplitude during pursuit; the most common form of modulation was response suppression when pursuit was opposite in direction to the cell's preferred direction. These results suggest that some cells in area MST encode retinal image motion veridically during eye movements, whereas others in both MT and MST contribute to the suppression of visual responses to reafferent motion.


Subject(s)
Brain Mapping , Neurons/physiology , Saccades/physiology , Temporal Lobe/cytology , Visual Fields/physiology , Action Potentials/physiology , Animals , Macaca mulatta , Models, Biological , Motion Perception/physiology , Photic Stimulation/methods , Reaction Time/physiology , Signal Detection, Psychological/physiology , Statistics as Topic , Visual Pathways/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...