Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 34(15): 4603-4613, 2018 04 17.
Article in English | MEDLINE | ID: mdl-29554800

ABSTRACT

We use single-particle tracking to investigate colloidal dynamics in hybrid assemblies comprising colloids enmeshed in a crosslinked polymer network. These assemblies are prepared using ice templating and are macroporous monolithic structures. We investigate microstructure-property relations in assemblies that appear chemically identical but show qualitatively different mechanical response. Specifically, we contrast elastic assemblies that can recover from large compressive deformations with plastic assemblies that fail on being compressed. Particle tracking provides insights into the microstructural differences that underlie the different mechanical response of elastic and plastic assemblies. Since colloidal motions in these assemblies are sluggish, particle tracking is especially sensitive to imaging artifacts such as stage drift. We demonstrate that the use of wavelet transforms applied to trajectories of probe particles from fluorescence microscopy eliminates stage drift, allowing a spatial resolution of about 2 nm. In elastic and plastic scaffolds, probe particles are surrounded by other particles-thus, their motion is caged. We present mean square displacement and van Hove distributions for particle motions and demonstrate that plastic assemblies are characterized by significantly larger spatial heterogeneity when compared with the elastic sponges. In elastic assemblies, particle diffusivities are peaked around a mean value, whereas in plastic assemblies, there is a wide distribution of diffusivities with no clear peak. Both elastic and plastic assemblies show a frequency independent solid modulus from particle tracking microrheology. Here too, there is a much wider distribution of modulus values for plastic scaffolds as compared to elastic, in contrast to bulk rheological measurements where both assemblies exhibit a similar response. We interpret our results in terms of the spatial distribution of crosslinks in the polymer mesh in the colloidal assemblies.

2.
Angew Chem Int Ed Engl ; 54(51): 15424-8, 2015 Dec 14.
Article in English | MEDLINE | ID: mdl-26546495

ABSTRACT

Traditional CdSe-based colloidal quantum dots (cQDs) have interesting photoluminescence (PL) properties. Herein we highlight the advantages in both ensemble and single-nanocrystal PL of colloidal CsPbBr3 nanocrystals (NCs) over the traditional cQDs. An ensemble of colloidal CsPbBr3 NCs (11 nm) exhibits ca. 90 % PL quantum yield with narrow (FWHM=86 meV) spectral width. Interestingly, the spectral width of a single-NC and an ensemble are almost identical, ruling out the problem of size-distribution in PL broadening. Eliminating this problem leads to a negligible influence of self-absorption and Förster resonance energy transfer, along with batch-to-batch reproducibility of NCs exhibiting PL peaks within ±1 nm. Also, PL peak positions do not alter with measurement temperature in the range of 25 to 100 °C. Importantly, CsPbBr3 NCs exhibit suppressed PL blinking with ca. 90 % of the individual NCs remain mostly emissive (on-time >85 %), without much influence of excitation power.

3.
J Phys Chem Lett ; 6(17): 3483-9, 2015 Sep 03.
Article in English | MEDLINE | ID: mdl-26291471

ABSTRACT

Pseudohalide thiocyanate anion (SCN(-)) has been used as a dopant in a methylammonium lead tri-iodide (MAPbI3) framework, aiming for its use as an absorber layer for photovoltaic applications. The substitution of SCN(-) pseudohalide anion, as verified using Fourier transform infrared (FT-IR) spectroscopy, results in a comprehensive effect on the optical properties of the original material. Photoluminescence measurements at room temperature reveal a significant enhancement in the emission quantum yield of MAPbI3-x(SCN)x as compared to MAPbI3, suggestive of suppression of nonradiative channels. This increased intensity is attributed to a highly edge specific emission from MAPbI3-x(SCN)x microcrystals as revealed by photoluminescence microscopy. Fluoresence lifetime imaging measurements further established contrasting carrier recombination dynamics for grain boundaries and the bulk of the doped material. Spatially resolved emission spectroscopy on individual microcrystals of MAPbI3-x(SCN)x reveals that the optical bandgap and density of states at various (local) nanodomains are also nonuniform. Surprisingly, several (local) emissive regions within MAPbI3-x(SCN)x microcrystals are found to be optically unstable under photoirradiation, and display unambiguous temporal intermittency in emission (blinking), which is extremely unusual and intriguing. We find diverse blinking behaviors for the undoped MAPbI3 crystals as well, which leads us to speculate that blinking may be a common phenomenon for most hybrid perovskite materials.


Subject(s)
Calcium Compounds/chemistry , Halogens/chemistry , Oxides/chemistry , Titanium/chemistry , Crystallization , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
4.
Dalton Trans ; 44(7): 3082-91, 2015 Feb 21.
Article in English | MEDLINE | ID: mdl-25567779

ABSTRACT

Visible light excitable and color tunable ∼5% Eu(3+)-doped LaF3 nanocrystals (NCs), containing 9-oxidophenalenone ligands bound to the surface as visible light sensitizers for Eu(3+) dopants, have been synthesized by a facile solution-based method. The crystalline phase structure, size, composition, morphology and luminescence properties of the NCs are characterized using X-ray diffraction, high-resolution transmission electron microscopy, energy dispersive X-ray spectroscopy, and steady-state and time-resolved emission spectroscopy. The results show that these NCs are very small in size (<10 nm), display high degree of crystallinity and have pure tysonite structure of LaF3 with P3[combining macron]c1 space group. The visible light excitation of the capping ligands triggers an alternate display of steady-state, short-lived blue emission (τ < 1 ns) and time-delayed, long-lived sensitized red Eu(3+) emission (τ = 0.41 ms), allowing photoluminescence chromacity tuning as a function of delay time within a specific inorganic composition. The visible light sensitization of the dopant Eu(3+) sites proves more efficient than direct excitation of 5% Eu(3+)-doped LaF3 NCs capped by citrate ligands. The dopant Eu(3+) ions are well protected from non-radiative deactivation through high-energy vibrations of the organic capping ligands which is proved by the long lifetime of the sensitized Eu(3+) emission. The time-resolved emission spectra collected over a period of several milliseconds reveal that the dopant Eu(3+) ions occupy at least three different sites in the NC host. It is further inferred that the sensitized Eu(3+) emission primarily comes from surface dopant sites and sites just underneath the surface of the NCs. We propose that some of the interior Eu(3+) sites also display sensitized emission, which are indirectly populated via Eu(3+) → Eu(3+) energy migration from surface-sensitized Eu(3+) sites of the NCs.


Subject(s)
Europium/chemistry , Fluorides/chemistry , Lanthanum/chemistry , Light , Luminescence , Nanoparticles/chemistry , Phenalenes/chemistry , Ligands , Time Factors , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...