Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Crit Rev Biomed Eng ; 46(2): 93-108, 2018.
Article in English | MEDLINE | ID: mdl-30055526

ABSTRACT

We present a review of recent developments in powered ankle-foot prostheses (PAFPs), with emphasis on actuation, high- and low-level control strategies, and pneumatic, hydraulic, and electromechanical actuators. A high-level control strategy based on finite-state machines, combined with low-level control that drives the ankle torque, is the most common control strategy. On the other hand, brushless direct-current motors along with an energy storage and release mechanism are commonly used to reduce the overall size of the actuators and increase PAFP autonomy. Most designs have been evaluated experimentally, showing acceptable results in walking velocity and gait symmetry. Future research must focus on reducing weight, increasing energy efficiency, improving gait phase classification and/or intent of motion-prediction algorithms, updating low-level control of torque and position, and developing the ability of the patient to walk on sloped surfaces and negotiate stairs.


Subject(s)
Ankle , Artificial Limbs , Foot , Prosthesis Design/trends , Amputees/rehabilitation , Ankle Joint/physiology , Biomechanical Phenomena/physiology , Gait/physiology , Humans , Lower Extremity , Prosthesis Design/methods , Torque , Walking/physiology
2.
J Biomech ; 75: 77-88, 2018 06 25.
Article in English | MEDLINE | ID: mdl-29861093

ABSTRACT

To achieve human upright posture (UP) and avoid falls, the central nervous system processes visual, vestibular, and proprioceptive information to activate the appropriate muscles to accelerate or decelerate the body's center of mass. In this process, sensory-motor (SM) latencies and muscular deficits, even in healthy older adults, may cause falls. This condition is worse for people with chronic neuromuscular deficits (stroke survivors, patients with multiple sclerosis or Parkinson's disease). One therapeutic approach is to recover or improve quiet UP by utilizing a balance board (BB) (a rotating surface with a tunable stiffness and time delay), where a patient attempts to maintain UP while task difficulty is manipulated. While BBs are commonly used, it is unclear how UP is maintained or how changes in system parameters such as SM latencies and BB time delay affect UP stability. To understand these questions, it is important that mathematical models be developed with enough degrees-of-freedom to capture the many responses evoked during the maintenance of UP on a BB. This paper presents an ankle-hip model of balance on a BB, which is used to study the combined effect of SM latencies and active muscular stiffness of the ankle and hip joints, and the BB stiffness and time delay on UP stability. The analysis predicts that people with proprioceptive, visual, vestibular loss, or increased SM latencies may show either leaning postures or larger body-sway. The results show that the BB time delay and the visual and vestibular feedback have the largest impact on UP stability.


Subject(s)
Ankle Joint/physiology , Hip Joint/physiology , Models, Biological , Postural Balance/physiology , Feedback, Physiological , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...