Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioeng Transl Med ; 8(6): e10591, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38023723

ABSTRACT

Sustained release of vaccine components is a potential method to boost efficacy compared with traditional bolus injection. Here, we show that a biodegradable hyaluronic acid (HA)-scaffold, termed HA cryogel, mediates sustained antigen and adjuvant release in vivo leading to a durable immune response. Delivery from subcutaneously injected HA cryogels was assessed and a formulation which enhanced the immune response while minimizing the inflammation associated with the foreign body response was identified, termed CpG-OVA-HAC2. Dose escalation studies with CpG-OVA-HAC2 demonstrated that both the antibody and T cell responses were dose-dependent and influenced by the competency of neutrophils to perform oxidative burst. In immunodeficient post-hematopoietic stem cell transplanted mice, immunization with CpG-OVA-HAC2 elicited a strong antibody response, three orders of magnitude higher than dose-matched bolus injection. In a melanoma model, CpG-OVA-HAC2 induced dose-responsive prophylactic protection, slowing the tumor growth rate and enhancing overall survival. Upon rechallenge, none of the mice developed new tumors suggesting the development of robust immunological memory and long-lasting protection against repeat infections. CpG-OVA-HAC2 also enhanced survival in mice with established tumors. The results from this work support the potential for CpG-OVA-HAC2 to enhance vaccine delivery.

2.
Bioeng Transl Med ; 8(1): e10309, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36684088

ABSTRACT

Neutrophils are essential effector cells for mediating rapid host defense and their insufficiency arising from therapy-induced side-effects, termed neutropenia, can lead to immunodeficiency-associated complications. In autologous hematopoietic stem cell transplantation (HSCT), neutropenia is a complication that limits therapeutic efficacy. Here, we report the development and in vivo evaluation of an injectable, biodegradable hyaluronic acid (HA)-based scaffold, termed HA cryogel, with myeloid responsive degradation behavior. In mouse models of immune deficiency, we show that the infiltration of functional myeloid-lineage cells, specifically neutrophils, is essential to mediate HA cryogel degradation. Post-HSCT neutropenia in recipient mice delayed degradation of HA cryogels by up to 3 weeks. We harnessed the neutrophil-responsive degradation to sustain the release of granulocyte colony stimulating factor (G-CSF) from HA cryogels. Sustained release of G-CSF from HA cryogels enhanced post-HSCT neutrophil recovery, comparable to pegylated G-CSF, which, in turn, accelerated cryogel degradation. HA cryogels are a potential approach for enhancing neutrophils and concurrently assessing immune recovery in neutropenic hosts.

3.
Expert Opin Drug Discov ; 16(1): 89-99, 2021 01.
Article in English | MEDLINE | ID: mdl-32867561

ABSTRACT

INTRODUCTION: Breakthroughs in cancer immunotherapy have spurred interest in the development of vaccines to mediate prophylactic protection and therapeutic efficacy against primary tumors or to prevent relapse. However, immunosuppressive mechanisms employed by cancer cells to generate effective resistance have hampered clinical translation of therapeutic cancer vaccines. To enhance vaccine efficacy, the immunomodulatory properties of cytoreductive therapies could amplify a cancer-specific immune response. AREAS COVERED: Herein, the authors discuss therapeutic cancer vaccines that harness whole cells and antigen-targeted vaccines. First, recent advancements in both autologous and allogeneic whole-cell vaccines and combinations with checkpoint blockade and chemotherapy are reviewed. Next, tumor antigen-targeted vaccines using peptide-based vaccines and DNA-vaccines are discussed. Finally, combination therapies using antigen-targeted vaccines are reviewed. EXPERT OPINION: A deeper understanding of the immunostimulatory properties of cytoreductive therapies has supported their utility in combination therapies involving cancer vaccines as a potential strategy to induce a durable anti-tumor immune response for multiple types of cancers. Based on current evidence, combination therapies may have synergies that depend on the identity of the cytotoxic agent, vaccine target, dosing schedule, and cancer type. Together, these observations suggest that combining cancer vaccines with immunomodulatory cytoreductive therapy is a promising strategy for cancer therapy.


Subject(s)
Cancer Vaccines/administration & dosage , Immunotherapy/methods , Neoplasms/therapy , Animals , Antigens, Neoplasm/immunology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Cancer Vaccines/immunology , Combined Modality Therapy , Humans , Neoplasms/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...