Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Prikl Biokhim Mikrobiol ; 43(3): 382-90, 2007.
Article in Russian | MEDLINE | ID: mdl-17619588

ABSTRACT

Studies using electrophoresis, gel chromatography, viscometry, and calorimetry revealed an interrelation of several physicochemical properties of proteins of soft wheat grown under conditions of cool and wet weather with rheological characteristics of gluten and dough and bread quality. The ratio of gliadin and albumin-globulin polypeptides in flour with short-tearing gluten was much lower compared to that in flour with normal gluten. Proteins from flour with short-tearing gluten, including the water-soluble and salt-soluble fraction, had a loose spatial structure. Gluten fractions of this gluten (gliadin and glutenin) were characterized by a more compact and elongated structure compared to normal gluten. As distinct from normal gluten, the conformation of protein particles in short-tearing gluten depended little on hydrophobic interactions. The results suggest that the main components of grain determine the rheological properties of short-tearing gluten.


Subject(s)
Acclimatization/physiology , Cold Climate , Flour/analysis , Glutens/analysis , Triticum/physiology
2.
Prikl Biokhim Mikrobiol ; 40(6): 693-8, 2004.
Article in Russian | MEDLINE | ID: mdl-15609862

ABSTRACT

Fractional and component compositions of protein-lipid composites with increased nutritive value (compared to the protein preparations from which they were produced) were studied based on solubility and electrophoretic behavior. Differences in the fractional compositions of proteins and the amounts of hydrogen, ionic, and hydrophobic bonds were found. It was demonstrated that the water-, salt-, and alkali-soluble fractions of proteins changed during the manufacturing of the composites with soybean and wheat bran flour; the water- and alkali-soluble fractions, with protein concentrate from bran. Heterogeneity of the compositions and specific conformational features of composite proteins resulting from disulfide bonds were found. It was demonstrated that, during the manufacturing of composites, proteins of soybean flour aggregated (with the involvement of disulfide bonds), whereas protein products from wheat bran disaggregated. Breaks of interchain (wheat) or intrachain (concentrate) disulphide bonds accompanied the disaggregation. Overall the properties and specific structural features of the protein-lipid composites studied depended on the nature of the protein (soybean or wheat), type of initial preparations (flour or concentrate), and method of their production (emulsifying or drying).


Subject(s)
Lipids/chemistry , Nutritive Value , Proteins/chemistry , Electrophoresis, Polyacrylamide Gel , Molecular Structure , Solubility
3.
Biokhimiia ; 43(4): 678-85, 1978.
Article in Russian | MEDLINE | ID: mdl-26427

ABSTRACT

A group of proteins migrating to the anode at pH 8.6 under polyacrylamide gel electrophoresis was revealed in the total protein of non-dissociated KCl-washed pea seed ribosomes. No proteins with an isoelectric point below pH 4.2 Were found. The presence of acidic proteins in 80 S ribosomes is due to the presence of a specific set of relatively acidic proteins in the total protein of large (5 major and 10 minor components) and small (2 major and 4 minor components) subunits. The mostly acidic proteins are located in the large subunit. The acidic proteins of 60S and 40S subunits are represented by the polypeptide chains with molecular weights from 48 000 to 13 000. The acidic proteins are present in the ribosomes studied in considerably less number than the basic proteins, and the former produce a very weak staining under electrophoretic analysis as compared with the latter. The data obtained suggest that 80S ribosomes of higher plants differ from animal ribosomes by a higher content of relatively acidic proteins.


Subject(s)
Fabaceae/analysis , Plant Proteins , Plants, Medicinal , Ribosomal Proteins , Seeds/analysis , Electrophoresis, Polyacrylamide Gel , Hydrogen-Ion Concentration , Molecular Weight
4.
Biokhimiia ; 40(3): 461-7, 1975.
Article in Russian | MEDLINE | ID: mdl-1203365

ABSTRACT

The molecular weight distribution of the total protein of ribosomes and ribosomal subunits isolated from dry pea seeds was studied by electrophoresis in polyacrylamide gel, containing sodium dodecyl sulfate. It was demonstrated that overall protein of 80 S ribosomes is separated into a number of fractions with molecular weights of 10000-64000. Treatment of ribosomes with 0.5 per cent tritone, 0.5 per cent and 1 per cent deoxycholate does not change the general pattern of the molecular weight distribution of ribosomal proteins. The large subunit reveals 19 protein zones (14 major and 5 minor zones), their molecular weights are varying from 10000 to 54000. The majority of proteins of the large subunit have molecular weights of 14000--32000. The molecular weights of 17 protein zones of the small subunit (7 major and 10 minor zones) vary from 10000 to 64000. The majority of proteins of both large and small subunits have molecular weights of 14000--32000. Electrophoretic separation of proteins in the split gel confirmed the fact that the proteins of large subunit differ in molecular weights from those of the small subunit. Thus, ribosomal proteins of pea seeds are shown to produce a typical (for 80S ribosomes) pattern of molecular weight distribution under polyacrylamide gel electrophoresis in the presence of sodium dodecul sulphate.


Subject(s)
Plant Proteins , Ribosomal Proteins , Seeds/analysis , Binding Sites , Deoxycholic Acid , Electrophoresis, Polyacrylamide Gel , Macromolecular Substances , Molecular Weight , Polyethylene Glycols , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...