Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(5): e0303433, 2024.
Article in English | MEDLINE | ID: mdl-38743676

ABSTRACT

Triple-negative breast cancer (TNBC) demands urgent attention for the development of effective treatment strategies due to its aggressiveness and limited therapeutic options [1]. This research is primarily focused on identifying new biomarkers vital for immunotherapy, with the aim of developing tailored treatments specifically for TNBC, such as those targeting the PD-1/PD-L1 pathway. To achieve this, the study places a strong emphasis on investigating Ig genes, a characteristic of immune checkpoint inhibitors, particularly genes expressing Ig-like domains with altered expression levels induced by "cancer deformation," a condition associated with cancer malignancy. Human cells can express approximately 800 Ig family genes, yet only a few Ig genes, including PD-1 and PD-L1, have been developed into immunotherapy drugs thus far. Therefore, we investigated the Ig genes that were either upregulated or downregulated by the artificial metastatic environment in TNBC cell line. As a result, we confirmed the upregulation of approximately 13 Ig genes and validated them using qPCR. In summary, our study proposes an approach for identifying new biomarkers applicable to future immunotherapies aimed at addressing challenging cases of TNBC where conventional treatments fall short.


Subject(s)
Biomarkers, Tumor , Immunotherapy , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/immunology , Triple Negative Breast Neoplasms/therapy , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Immunotherapy/methods , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic , B7-H1 Antigen/metabolism , B7-H1 Antigen/genetics , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Programmed Cell Death 1 Receptor/metabolism
2.
Res Sq ; 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38585715

ABSTRACT

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity and response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse brain ex vivo and in vivo. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. Lastly, we demonstrated acute opioid-induced generation of H2O2 signal in vivo which highlights redox-based mechanisms of GPCR regulation. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for understanding diseases associated with oxidative stress, such as cancer, neurodegenerative, and cardiovascular diseases.

3.
bioRxiv ; 2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38352381

ABSTRACT

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

4.
J Neurosci ; 44(16)2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38413232

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a debilitating neurodegenerative disorder marked by progressive motor neuron degeneration and muscle denervation. A recent transcriptomic study integrating a wide range of human ALS samples revealed that the upregulation of p53, a downstream target of inflammatory stress, is commonly detected in familial and sporadic ALS cases by a mechanism linked to a transactive response DNA-binding protein 43 (TDP-43) dysfunction. In this study, we show that prolonged interferon-gamma (IFNγ) treatment of human induced pluripotent stem cell-derived spinal motor neurons results in a severe cytoplasmic aggregation of TDP-43. TDP-43 dysfunction resulting from either IFNγ exposure or an ALS-associated TDP-43 mutation was associated with the activation of the p53 pathway. This was accompanied by the hyperactivation of neuronal firing, followed by the complete loss of their electrophysiological function. Through a comparative single-cell transcriptome analysis, we have identified significant alterations in ALS-associated genes in motor neurons exposed to IFNγ, implicating their direct involvement in ALS pathology. Interestingly, IFNγ was found to induce significant levels of programmed death-ligand 1 (PD-L1) expression in motor neurons without affecting the levels of any other immune checkpoint proteins. This finding suggests a potential role of excessive PD-L1 expression in ALS development, given that PD-L1 was recently reported to impair neuronal firing ability in mice. Our findings suggest that exposing motor neurons to IFNγ could directly derive ALS pathogenesis, even without the presence of the inherent genetic mutation or functional glia component. Furthermore, this study provides a comprehensive list of potential candidate genes for future immunotherapeutic targets with which to treat sporadic forms of ALS, which account for 90% of all reported cases.


Subject(s)
Amyotrophic Lateral Sclerosis , Induced Pluripotent Stem Cells , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , B7-H1 Antigen/metabolism , Biomarkers , DNA-Binding Proteins/genetics , Induced Pluripotent Stem Cells/metabolism , Interferon-gamma/metabolism , Interferon-gamma/pharmacology , Motor Neurons/drug effects , Motor Neurons/metabolism , Motor Neurons/pathology , Tumor Suppressor Protein p53/metabolism
5.
Lab Chip ; 23(16): 3628-3638, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37448298

ABSTRACT

Surgery, radiation, hormonal therapy, chemotherapy, and immunotherapy are standard treatment strategies for metastatic breast cancer. However, the heterogeneous nature of the disease poses challenges and continues to make it life-threatening. It is crucial to elucidate further the underlying signaling pathways to improve treatment efficacy. Our study established two triple-negative breast cancer cell lines (TW-1 and TW-2) that were physically deformed using 3 µm pores to investigate the relationship between cancer cell deformation and metastasis within a heterogeneous population. The physical transformation of TW-1 and TW-2 cells significantly affected their growth and migration speed, as evidenced by wound healing assays for collective cell migration and microchannel assays for single-cell migration. We conducted bulk RNA sequencing to gain insights into the genes influenced by physical deformation. Additionally, we evaluated the effects of trametinib resistance on breast cancer cell metastasis by assessing cell viability and migration rates. Interestingly, TW-1 and TW-2 cells exhibited resistance to trametinib treatment. We observed a significant upregulation of GABRA-3, a protein commonly expressed in malignant breast cancer, and the critical transcription factor Myc in TW-1 and TW-2 cells compared to the control group (Ori). However, we did not observe a significant difference in Myc expression between TW-1 and TW-2 cells. In contrast, in the trametinib-resistant cell lines (TW-1-Tra and TW-2-Tra), we found increased expression of OCT4 and SOX2 rather than GABRA-3 or Myc. These findings highlight the differential expression patterns of these genes in our study, suggesting their potential role in cancer cell deformation and drug resistance. Our study presents a potential in vitro model for metastatic and drug-resistant breast cancer cells. By investigating the correlation between cancer cell deformation and metastasis, we contribute to understanding breast cancer heterogeneity and lay the groundwork for developing improved treatment strategies.


Subject(s)
Breast Neoplasms , Humans , Female , Cell Line, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/drug therapy , Signal Transduction , Treatment Outcome , Cell Survival , Cell Proliferation
6.
Adv Biol (Weinh) ; 6(2): e2101308, 2022 02.
Article in English | MEDLINE | ID: mdl-34958183

ABSTRACT

Charcot-Marie-Tooth disease type 2D (CMT2D), is a hereditary peripheral neuropathy caused by mutations in the gene encoding glycyl-tRNA synthetase (GARS1). Here, human induced pluripotent stem cell (hiPSC)-based models of CMT2D bearing mutations in GARS1 and their use for the identification of predictive biomarkers amenable to therapeutic efficacy screening is described. Cultures containing spinal cord motor neurons generated from this line exhibit network activity marked by significant deficiencies in spontaneous action potential firing and burst fire behavior. This result matches clinical data collected from a patient bearing a GARS1P724H mutation and is coupled with significant decreases in acetylated α-tubulin levels and mitochondrial movement within axons. Treatment with histone deacetylase 6 inhibitors, tubastatin A and CKD504, improves mitochondrial movement and α-tubulin acetylation in these cells. Furthermore, CKD504 treatment enhances population-level electrophysiological activity, highlighting its potential as an effective treatment for CMT2D.


Subject(s)
Charcot-Marie-Tooth Disease , Glycine-tRNA Ligase , Induced Pluripotent Stem Cells , Axonal Transport , Charcot-Marie-Tooth Disease/drug therapy , Glycine-tRNA Ligase/genetics , Histone Deacetylase 6/genetics , Histone Deacetylase Inhibitors/pharmacology , Humans , Induced Pluripotent Stem Cells/metabolism , Tubulin/genetics
7.
Front Cell Dev Biol ; 9: 728707, 2021.
Article in English | MEDLINE | ID: mdl-34660586

ABSTRACT

Gene editing technologies hold great potential to enhance our ability to model inheritable neurodegenerative diseases. Specifically, engineering multiple amyotrophic lateral sclerosis (ALS) mutations into isogenic cell populations facilitates determination of whether different causal mutations cause pathology via shared mechanisms, and provides the capacity to separate these mechanisms from genotype-specific effects. As gene-edited, cell-based models of human disease become more commonplace, there is an urgent need to verify that these models constitute consistent and accurate representations of native biology. Here, commercially sourced, induced pluripotent stem cell-derived motor neurons from Cellular Dynamics International, edited to express the ALS-relevant mutations TDP-43M337V and TDP-43Q331K were compared with in-house derived lines engineered to express the TDP-43Q331K mutation within the WTC11 background. Our results highlight electrophysiological and mitochondrial deficits in these edited cells that correlate with patient-derived cells, suggesting a consistent cellular phenotype arising from TDP-43 mutation. However, significant differences in the transcriptomic profiles and splicing behavior of the edited cells underscores the need for careful comparison of multiple lines when attempting to use these cells as a means to better understand the onset and progression of ALS in humans.

8.
Biomaterials ; 271: 120700, 2021 04.
Article in English | MEDLINE | ID: mdl-33631652

ABSTRACT

Neurons derived from human induced pluripotent stem cells (hiPSCs) are powerful tools for modeling neural pathophysiology and preclinical efficacy/toxicity screening of novel therapeutic compounds. However, human neurons cultured in vitro typically do not fully recapitulate the physiology of the human nervous system, especially in terms of exhibiting morphological maturation, longevity, and electrochemical signaling ability comparable to that of adult human neurons. In this study, we investigated the potential for astrocyte-derived extracellular vesicles (EVs) to modulate survival and electrophysiological function of human neurons in vitro. Specifically, we demonstrate that EVs obtained from human astrocytes promote enhanced single cell electrophysiological function and anti-apoptotic behavior in a homogeneous population of human iPSC-derived cortical neurons. Furthermore, EV-proteomic analysis was performed to identify cargo proteins with the potential to promote the physiological enhancement observed. EV cargos were found to include neuroprotective proteins such as heat shock proteins, alpha-synuclein, and lipoprotein receptor-related protein 1 (LRP1), as well as apolipoprotein E (APOE), which negatively regulates neuronal apoptosis, and a peroxidasin homolog that supports neuronal oxidative stress management. Proteins that positively regulate neuronal excitability and synaptic development were also detected, such as potassium channel tetramerization domain containing 12 (KCTD12), glucose-6- phosphate dehydrogenase (G6PD), kinesin family member 5B (KIF5B), spectrin-alpha non-erythrocytic1 (SPTAN1). The remarkable improvements in electrophysiological function and evident inhibition of apoptotic signaling in cultured neurons exposed to these cargos may hold significance for improving preclinical in vitro screening modalities. In addition, our collected data highlight the potential for EV-based therapeutics as a potential class of future clinical treatment for tackling inveterate central and peripheral neuropathies.


Subject(s)
Extracellular Vesicles , Induced Pluripotent Stem Cells , Peripheral Nervous System Diseases , Astrocytes , Cells, Cultured , Humans , Neurons , Proteomics
9.
J Neurooncol ; 118(1): 29-37, 2014 May.
Article in English | MEDLINE | ID: mdl-24610460

ABSTRACT

Despite advances in surgery, chemotherapy and radiotherapy, the outcomes of patients with GBM have not significantly improved. Tumor recurrence in the resection margins occurs in more than 80% of cases indicating aggressive treatment modalities, such as gene therapy are warranted. We have examined photochemical internalization (PCI) as a method for the non-viral transfection of the cytosine deaminase (CD) suicide gene into glioma cells. The CD gene encodes an enzyme that can convert the nontoxic antifungal agent, 5-fluorocytosine, into the chemotherapeutic drug, 5-fluorouracil. Multicell tumor spheroids derived from established rat and human glioma cell lines were used as in vitro tumor models. Plasmids containing either the CD gene alone or together with the uracil phosphoribosyl transferase (UPRT) gene combined with the gene carrier protamine sulfate were employed in all experiments.PCI was performed with the photosensitizer AlPcS2a and 670 nm laser irradiance. Protamine sulfate/CD DNA polyplexes proved nontoxic but inefficient transfection agents due to endosomal entrapment. In contrast, PCI mediated CD gene transfection resulted in a significant inhibition of spheroid growth in the presence of, but not in the absence of, 5-FC. Repetitive PCI induced transfection was more efficient at low CD plasmid concentration than single treatment. The results clearly indicate that AlPcS2a-mediated PCI can be used to enhance transfection of a tumor suicide gene such as CD, in malignant glioma cells and cells transfected with both the CD and UPRT genes had a pronounced bystander effect.


Subject(s)
Antifungal Agents/pharmacology , Cytosine Deaminase/genetics , Cytosine Deaminase/metabolism , Flucytosine/pharmacology , Cell Line, Tumor/drug effects , Dose-Response Relationship, Drug , Glioma/pathology , Humans , Indoles/pharmacology , Organometallic Compounds/pharmacology , Pentosyltransferases/genetics , Pentosyltransferases/metabolism , Photochemical Processes/drug effects , Photosensitizing Agents/pharmacology , Transfection
10.
Analyst ; 137(3): 584-7, 2012 Feb 07.
Article in English | MEDLINE | ID: mdl-22159284

ABSTRACT

A dynamic light scattering (DLS) method was adopted for measuring the corrosion of iron nanoparticles. The average diameter of the nanoparticles in a sodium chloride suspension increased linearly with time as iron oxide layers formed around the nanoparticles. The nanoparticle corrosion rate determined by DLS was found to be almost identical to the value obtained by conventional immersion tests (ASTM G31). The DLS method offers the advantage that measurements may be completed within several hours under natural corrosion conditions whereas the conventional immersion method requires several months. Application of the DLS method to alloy nanoparticles with a variety of chromium compositions showed that the nanoparticle sizes changed nonlinearly over time, and the curves were best fit by a first order exponential function. The first order time constants were found to be linearly related to the corrosion rates determined by ASTM G31.

11.
Chem Commun (Camb) ; 47(39): 11047-9, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21904752

ABSTRACT

A facile and sensitive immunoassay protocol for the detection of alpha-fetoprotein (AFP) was developed using gold-coated iron oxide magnetic nanoclusters and dynamic light scattering (DLS) methods. The increase in the average particle size due to AFP-mediated aggregation was measured using DLS, and the detection limit was better than 0.01 ng mL(-1).


Subject(s)
Ferric Compounds/chemistry , Gold/chemistry , Immunoassay/methods , Light , Nanoparticles/chemistry , Scattering, Radiation , alpha-Fetoproteins/analysis , Magnets/chemistry , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...