Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
Add more filters










Publication year range
1.
Biochem Pharmacol ; : 116259, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38705538

ABSTRACT

Mounting evidence from preclinical and clinical studies suggests that persistent inflammation functions as a driving force in the journey to cancer. Cyclooxygenase-2 (COX-2) is a key enzyme involved in inflammatory signaling. While being transiently upregulated upon inflammatory stimuli, COX-2 has been found to be consistently overexpressed in human colorectal cancer and several other malignancies. The association between chronic inflammation and cancer has been revisited: cancer can arise when inflammation fails to resolve. Besides its proinflammatory functions, COX-2 also catalyzes the production of pro-resolving as well as anti-inflammatory metabolites from polyunsaturated fatty acids. This may account for the side effects caused by long term use of some COX-2 inhibitory drugs during the cancer chemopreventive trials. This review summarizes the latest findings highlighting the dual functions of COX-2 in the context of its implications in the development, maintenance, and progression of cancer.

2.
Biomol Ther (Seoul) ; 32(3): 390-398, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38586882

ABSTRACT

FoxO1, a member of the Forkhead transcription factor family subgroup O (FoxO), is expressed in a range of cell types and is crucial for various pathophysiological processes, such as apoptosis and inflammation. While FoxO1's roles in multiple diseases have been recognized, the target has remained largely unexplored due to the absence of cost-effective and efficient inhibitors. Therefore, there is a need for natural FoxO1 inhibitors with minimal adverse effects. In this study, docking, MMGBSA, and ADMET analyses were performed to identify natural compounds that exhibit strong binding affinity to FoxO1. The top candidates were then subjected to molecular dynamics (MD) simulations. A natural product library was screened for interaction with FoxO1 (PDB ID- 3CO6) using the Glide module of the Schrödinger suite. In silico ADMET profiling was conducted using SwissADME and pkCSM web servers. Binding free energies of the selected compounds were assessed with the Prime-MMGBSA module, while the dynamics of the top hits were analyzed using the Desmond module of the Schrödinger suite. Several natural products demonstrated high docking scores with FoxO1, indicating their potential as FoxO1 inhibitors. Specifically, the docking scores of neochlorogenic acid and fraxin were both below -6.0. These compounds also exhibit favorable drug-like properties, and a 25 ns MD study revealed a stable interaction between fraxin and FoxO1. Our findings highlight the potential of various natural products, particularly fraxin, as effective FoxO1 inhibitors with strong binding affinity, dynamic stability, and suitable ADMET profiles.

3.
Int J Mol Sci ; 25(3)2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38338729

ABSTRACT

Src family kinases (SFKs) are non-receptor tyrosine kinases that are recognized as proto-oncogenic products. Among SFKs, YES1 is frequently amplified and overexpressed in a variety of human tumors, including lung, breast, ovarian, and skin cancers. YES1 plays a pivotal role in promoting cell proliferation, survival, and invasiveness during tumor development. Recent findings indicate that YES1 expression and activation are associated with resistance to chemotherapeutic drugs and tyrosine kinase inhibitors in human malignancies. YES1 undergoes post-translational modifications, such as lipidation and nitrosylation, which can modulate its catalytic activity, subcellular localization, and binding affinity for substrate proteins. Therefore, we investigated the diverse mechanisms governing YES1 activation and its impact on critical intracellular signal transduction pathways. We emphasized the function of YES1 as a potential mechanism contributing to the anticancer drug resistance emergence.


Subject(s)
Neoplasms , src-Family Kinases , Humans , Proto-Oncogene Proteins c-yes , Cell Line, Tumor , src-Family Kinases/metabolism , Signal Transduction , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Neoplasms/genetics
4.
Biomol Ther (Seoul) ; 31(6): 692-699, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37899746

ABSTRACT

The lack of molecular targets hampers the treatment of triple-negative breast cancer (TNBC). In this study, we determined the cytotoxicity of domperidone, a dopamine D2 receptor (DRD2) antagonist in human TNBC BT-549 and CAL-51 cells. Domperidone inhibited cell growth in a dose- and time-dependent manner. The annexin V/propidium iodide staining showed that domperidone induced apoptosis. The domperidone-induced apoptosis was accompanied by the generation of mitochondrial superoxide and the down-regulation of cyclins and CDKs. The apoptotic effect of domperidone on TNBC cells was prevented by pre-treatment with Mito-TEMPO, a mitochondria-specific antioxidant. The prevention of apoptosis with Mito-TEMPO even at concentrations as low as 100 nM, implies that the generation of mitochondrial ROS mediated the domperidone-induced apoptosis. Immunoblot analysis showed that domperidone-induced apoptosis occurred through the down-regulation of the phosphorylation of JAK2 and STAT3. Moreover, domperidone downregulated the levels of D2-like dopamine receptors including DRD2, regardless of their mRNA levels. Our results support further development of DRD2 antagonists as potential therapeutic strategy treating TNBC.

5.
Biomol Ther (Seoul) ; 31(1): 68-72, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36380602

ABSTRACT

Pancreatic cancer is one of the most fatal cancers with a poor prognosis. Standard chemotherapies have proven largely ineffective because of their toxicity and the development of resistance. Therefore, there is an urgent need to develop novel therapies. In this study, we investigated the antitumor activity of MS-5, a naphthalene derivative, on BxPC-3, a human pancreatic cancer cell line. We observed that MS-5 was cytotoxic to BxPC-3 cells, as well as inhibited the growth of cells in a concentration- and time- dependent manner. Flow cytometry analysis revealed that the percentage of annexin V-positive cells increased after MS-5 treatment. We also observed cleavage of caspases and poly (ADP-ribose) polymerase, and downregulation of Bcl-xL protein. Flow cytometry analysis of intracellular levels of reactive oxygen species (ROS) and mitochondrial superoxide suggested that MS-5 induced the generation of mitochondrial superoxide while lowering the overall intracellular ROS levels. Thus, MS-5 may be potential candidate for pancreatic cancer treatment.

6.
Biomol Ther (Seoul) ; 30(6): 479-489, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35440517

ABSTRACT

5-Fluorouracil (5-FU) remains to be an important chemotherapeutic drug for treating several cancers when targeted therapy is unavailable. Chemoresistance limits the clinical utility of 5-FU, and new strategies are required to overcome the resistance. Reactive oxygen species (ROS) and antioxidants are balanced differently in both normal and cancer cells. Modulating ROS can be one method of overcoming 5-FU resistance. This review summarizes selected compounds and endogenous cellular targets modulating ROS generation to overcome 5-FU resistance.

7.
Biomol Ther (Seoul) ; 30(3): 284-290, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35110423

ABSTRACT

Oral squamous cell carcinoma (OSCC) is mostly diagnosed at an advanced stage, with local and/or distal metastasis. Thus, locoregional and/or local control of the primary tumor is crucial for a better prognosis in patients with OSCC. Platelets have long been considered major players in cancer metastasis. Traditional antiplatelet agents, such as aspirin, are thought to be potential chemotherapeutics, but they need to be used with caution because of the increased bleeding risk. Podoplanin (PDPN)-expressing cancer cells can activate platelets and promote OSCC metastasis. However, the reciprocal effect of platelets on PDPN expression in OSCC has not been investigated. In this study, we found that direct contact with platelets upregulated PDPN and integrin ß1 at the protein level and promoted invasiveness of human OSCC Ca9.22 cells that express low levels of PDPN. In another human OSCC HSC3 cell line that express PDPN at an abundant level, silencing of the PDPN gene reduced cell invasiveness. Analysis of the public database further supported the co-expression of PDPN and integrin ß1 and their increased expression in metastatic tissues compared to normal and tumor tissues of the oral cavity. Taken together, these data suggest that PDPN is a potential target to regulate platelet-tumor interaction and metastasis for OSCC treatment, which can overcome the limitations of traditional antiplatelet drugs.

8.
Semin Cancer Biol ; 86(Pt 3): 1008-1032, 2022 11.
Article in English | MEDLINE | ID: mdl-34838956

ABSTRACT

Normal cells express surface proteins that bind to immune checkpoint proteins on immune cells to turn them off, whereby the immune system does not attack normal healthy cells. Cancer cells can also utilize this same protective mechanism by expressing surface proteins that can interact with checkpoint proteins on immune cells to overcome the immune surveillance. Immunotherapy is making the best use of the body's own immune system to reinforce anti-tumor responses. The most generally used immunotherapy is the control of immune checkpoints including the cytotoxic T lymphocyte-associated molecule 4 (CTLA-4), programmed cell deathreceptor 1 (PD-1), or programmed cell death ligand-1 (PD-L1). In spite of the clinical effectiveness of immune checkpoint inhibitors, the overall response rate still remains low. Therefore, there have been considerable efforts in searching for alternative immune checkpoint proteins that may work as new therapeutic targets for treatment of cancer. Recent studies have identified several additional novel immune checkpoint targets, including lymphocyte activation gene-3, T cell immunoglobulin and mucin-domain containing-3, T cell immunoglobulin and immunoreceptor tyrosine-based inhibition motif domain, V-domain Ig suppressor of T cell activation, B7 homolog 3 protein, B and T cell lymphocyte attenuator, and inducible T cell COStimulator. Natural compounds, especially those present in medicinal or dietary plants, have been investigated for their anti-tumor effects in various in vitro and in vivo models. Some phytochemicals exert anti-tumor activities based on immunoregulatioby blocking interaction between proteins involved in immune checkpoint signal transduction or regulating their expression/activity. Recently, synergistic anti-cancer effects of diverse phytochemicals with anti-PD-1/PD-L1 or anti-CTLA-4 monoclonal antibody drugs have been continuously reported. Considering an increasing attention to noteworthy therapeutic effects of immune checkpoint inhibitors in the cancer therapy, this review focuses on regulatory effects of selected phytochemicals on immune checkpoint protein network and their combinational effectiveness with immune checkpoint inhibitors targeting tumor cells.


Subject(s)
Biological Products , Neoplasms , Humans , B7-H1 Antigen , Immune Checkpoint Proteins , Programmed Cell Death 1 Receptor , Biological Products/pharmacology , Biological Products/therapeutic use , Immune Checkpoint Inhibitors , Immunotherapy , Neoplasms/drug therapy , Neoplasms/pathology , Immunologic Factors
9.
Front Oncol ; 12: 997919, 2022.
Article in English | MEDLINE | ID: mdl-36741694

ABSTRACT

Owing to its unique nucleophilicity, cysteine is an attractive sulfhydryl-containing proteinogenic amino acid. It is also utilized in various metabolic pathways and redox homeostasis, as it is used for the component of major endogenous antioxidant glutathione and the generation of sulfur-containing biomolecules. In addition, cysteine is the most nucleophilic amino acid of proteins and can react with endogenous or exogenous electrophiles which can result in the formation of covalent bonds, which can alter the cellular states and functions. Moreover, post-translational modifications of cysteines trigger redox signaling and affect the three-dimensional protein structure. Protein phosphorylation mediated by kinases and phosphatases play a key role in cellular signaling that regulates many physiological and pathological processes, and consequently, the modification of cysteine regulates its activities. The modification of cysteine residues in proteins is critically important for the design of novel types of pharmacological agents. Therefore, in cancer metabolism and cancer cell survival, cysteine plays an essential role in redox regulation of cellular status and protein function. This review summarizes the diverse regulatory mechanisms of cysteine bound to or free from proteins in cancer. Furthermore, it can enhance the comprehension of the role of cysteine in tumor biology which can help in the development of novel effective cancer therapies.

10.
Food Chem Toxicol ; 157: 112604, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34627931

ABSTRACT

Melanoma is a highly aggressive and treatment-resistant cancer, and the incidence and mortality rates are increasing worldwide. Thymoquinone (TQ) is the active component of Nigella sativa seed extracts and exerts anticancer effects in various cancer cells. However, the anticancer effects of TQ on melanoma and the underlying molecular mechanisms remain elusive. In this study, TQ treatment induced apoptosis in SK-MEL-28 cells. Interestingly, constitutive phosphorylation of Janus kinase 2 (Jak2) and signal transducer and activator of transcription 3 (STAT3) was markedly decreased following TQ treatment. Furthermore, TQ treatment downregulated STAT3-dependent genes including cyclin D1, D2, and D3 and survivin. Moreover, inhibition of Jak2/STAT3 using AG490, an inhibitor of Jak2 or genetic ablation of STAT3, abrogated the expression of target genes. TQ increased the levels of reactive oxygen species (ROS), whereas pretreatment with N-acetyl cysteine (NAC), a ROS scavenger, prevented the suppressive effect of TQ on Jak2/STAT3 activation and protected SK-MEL-28 cells from TQ-induced apoptosis. TQ administration further attenuated the growth of SK-MEL-28 tumor xenografts. Taken together, TQ induced apoptosis of SK-MEL-28 by hindering the Jak2/STAT3 signaling pathway through ROS generation. Our results support further development of TQ as a potential anticancer therapeutic agent for treating melanoma.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Benzoquinones/pharmacology , Janus Kinase 2/metabolism , Melanoma/drug therapy , Oxidative Stress/drug effects , STAT3 Transcription Factor/metabolism , Signal Transduction/drug effects , Animals , Antineoplastic Agents/therapeutic use , Benzoquinones/therapeutic use , Blotting, Western , Cell Line, Tumor , Down-Regulation/drug effects , Humans , Melanoma/metabolism , Mice , Mice, Inbred BALB C , Mice, Nude , Neoplasm Transplantation , Reactive Oxygen Species/metabolism
11.
Free Radic Biol Med ; 172: 699-715, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34214633

ABSTRACT

While functioning as a second messenger in the intracellular signaling, ROS can cause oxidative stress when produced in excess or not neutralized/eliminated properly. Excessive ROS production is implicated in multi-stage carcinogenesis. Our body is equipped with a defense system to cope with constant oxidative stress caused by the external insults, including redox-cycling chemicals, radiation, and microbial infection as well as endogenously generated ROS. The transcription factor, nuclear transcription factor erythroid 2-related factor 2 (NRF2) is a master switch in the cellular antioxidant signaling and plays a vital role in adaptive survival response to ROS-induced oxidative stress. Although NRF2 is transiently activated when cellular redox balance is challenged, this can be overwhelmed by massive oxidative stress. Therefore, it is necessary to maintain the NRF2-mediated antioxidant defense capacity at an optimal level. This review summarizes the natural NRF2 inducers/activators, especially those present in the plant-based diet, in relation to their cancer chemopreventive potential in humans. The molecular mechanisms underlying their stabilization or activation of NRF2 are also discussed.


Subject(s)
NF-E2-Related Factor 2 , Oxidative Stress , Antioxidants , Homeostasis , Humans , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidation-Reduction , Phytochemicals/pharmacology
12.
Cells ; 10(4)2021 03 30.
Article in English | MEDLINE | ID: mdl-33808242

ABSTRACT

Redox homeostasis is not only essential for the maintenance of normal physiological functions, but also plays an important role in the growth, survival, and therapy resistance of cancer cells. Altered redox balance and consequent disruption of redox signaling are implicated in the proliferation and progression of cancer cells and their resistance to chemo- and radiotherapy. The nuclear factor erythroid 2 p45-related factor (Nrf2) is the principal stress-responsive transcription factor that plays a pivotal role in maintaining cellular redox homeostasis. Aberrant Nrf2 overactivation has been observed in many cancerous and transformed cells. Uncontrolled amplification of Nrf2-mediated antioxidant signaling results in reductive stress. Some metabolic pathways altered due to reductive stress have been identified as major contributors to tumorigenesis. This review highlights the multifaceted role of reductive stress in cancer development and progression.


Subject(s)
Disease Progression , Drug Resistance, Neoplasm , Neoplasms/drug therapy , Neoplasms/pathology , Oxidative Stress , Animals , Antioxidants/metabolism , Carcinogenesis/metabolism , Carcinogenesis/pathology , Humans , Oxidation-Reduction
13.
Int J Mol Sci ; 22(9)2021 Apr 22.
Article in English | MEDLINE | ID: mdl-33922165

ABSTRACT

The nuclear factor-erythroid 2 p45-related factor 2 (NRF2, also called Nfe2l2) and its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (KEAP1), are major regulators of redox homeostasis controlling a multiple of genes for detoxification and cytoprotective enzymes. The NRF2/KEAP1 pathway is a fundamental signaling cascade responsible for the resistance of metabolic, oxidative stress, inflammation, and anticancer effects. Interestingly, a recent accumulation of evidence has indicated that NRF2 exhibits an aberrant activation in cancer. Evidence has shown that the NRF2/KEAP1 signaling pathway is associated with the proliferation of cancer cells and tumerigenesis through metabolic reprogramming. In this review, we provide an overview of the regulatory molecular mechanism of the NRF2/KEAP1 pathway against metabolic reprogramming in cancer, suggesting that the regulation of NRF2/KEAP1 axis might approach as a novel therapeutic strategy for cancers.


Subject(s)
Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Neoplasms/pathology , Animals , Humans , Neoplasms/metabolism , Signal Transduction
14.
Cancers (Basel) ; 13(9)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33924899

ABSTRACT

It is well-known that microbiota dysbiosis is closely associated with numerous diseases in the human body. The oral cavity and gut are the two largest microbial habitats, playing a major role in microbiome-associated diseases. Even though the oral cavity and gut are continuous regions connected through the gastrointestinal tract, the oral and gut microbiome profiles are well-segregated due to the oral-gut barrier. However, the oral microbiota can translocate to the intestinal mucosa in conditions of the oral-gut barrier dysfunction. Inversely, the gut-to-oral microbial transmission occurs as well in inter- and intrapersonal manners. Recently, it has been reported that oral and gut microbiomes interdependently regulate physiological functions and pathological processes. Oral-to-gut and gut-to-oral microbial transmissions can shape and/or reshape the microbial ecosystem in both habitats, eventually modulating pathogenesis of disease. However, the oral-gut microbial interaction in pathogenesis has been underappreciated to date. Here, we will highlight the oral-gut microbiome crosstalk and its implications in the pathogenesis of the gastrointestinal disease and cancer. Better understanding the role of the oral-gut microbiome axis in pathogenesis will be advantageous for precise diagnosis/prognosis and effective treatment.

15.
Anticancer Res ; 41(3): 1315-1325, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33788723

ABSTRACT

BACKGROUND/AIM: The aim of this study was to reveal the novel roles of calmodulin 2 (CALM2) in hepatocellular carcinoma (HCC) progression. MATERIALS AND METHODS: The effects of knockdown of CALM2 expression by siRNA were investigated using various experimental approaches in both cellular and molecular levels. RESULTS: Silencing of CALM2 inhibited HCC cell proliferation and colony formation through induction of apoptosis. At the molecular level, CALM2-specific knockdown led to the common dysregulation of 154 genes in HCC cells. Notably, E2F transcription factor 5 (E2F5), which is functionally associated with migration, invasion and proliferation, was generally down-regulated. These functional associations were confirmed in HCC clinical samples. Reflecting the molecular changes, CALM2 knockdown reduced the migration and invasion abilities of HCC cells and abrogated the potency of tumor formation in vivo. CONCLUSION: Targeting CALM2 may be a molecular strategy for both primary HCC treatment and prevention of metastasis or recurrence.


Subject(s)
Calmodulin/physiology , Carcinoma, Hepatocellular/pathology , E2F5 Transcription Factor/physiology , Liver Neoplasms/pathology , Apoptosis/drug effects , Calmodulin/antagonists & inhibitors , Cell Cycle , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Humans , Neoplasm Metastasis , Neoplastic Stem Cells/physiology
16.
Toxicol Res ; 37(1): 25-33, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33489855

ABSTRACT

Gastric cancer is the fifth leading cause of cancer and a global public health problem. 5-Fluorouracil (5-FU) is the primary drug chosen for the treatment of advanced gastric cancer, but acquired cancer drug resistance limits its effectiveness and clinical use. Proliferation assays showed that a gastric carcinoma cell line, AGS and 5-FU-resistant AGS cells (AGS FR) treated with 3-100 µM 5-FU for 48 h or 72 h showed different sensitivities to 5-FU. Immunoblot assay demonstrated that AGS FR cells expressed more COX-2 and PGE2-cognated receptor EP2 than AGS cells. AGS FR cells considerably produced PGE2 than AGS upon stimulation with 5-FU. These results suggest that COX-2 expression is associated with 5-FU resistance. Unlike AGS FR cells, AGS cells showed increased levels of both cleaved caspase-3 and Bax following 5-FU treatment. Treatment of cells with the COX-2 selective inhibitor celecoxib induced cell death of AGS FR cells in a time- and concentration-dependent manner. FACS analysis showed that celecoxib at high doses caused apoptotic cell death, demonstrating a concentration-dependent increase in the cell populations undergoing early apoptosis and late apoptosis. This apoptotic induction was strongly supported by the expression profiles of apoptosis- and survival-associated proteins in response to celecoxib; pro-apoptotic cellular proteins increased while expressions of COX-2 and p-Akt were downregulated in a concentration-dependent manner. An increase in PTEN expression was accompanied with downregulation of p-Akt. Based on the data that downregulation of COX-2 was correlated with the concentrations of celecoxib, COX-2 may play a key role in celecoxib-induced cell death of AGS FR cells. Butaprost, the EP2 agonist, promoted proliferative activity of AGS FR cells in a concentration-dependent manner compared with AGS cells. In cells exposed to butaprost, expressions of COX-2 and p-Akt were increased in a concentration-dependent manner with concomitantly reduced PTEN levels. Taken together, 5-FU-resistance in gastric cancer is correlated with COX-2 expression, and therefore the selective inhibition of COX-2 leads to suppression of cell proliferation of AGS FR cells. Modulation of COX-2 expression and its catalytic activity may be a potential therapeutic strategy to overcome 5-FU-resistant gastric cancer.

17.
Biomol Ther (Seoul) ; 29(1): 64-72, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32843585

ABSTRACT

Renal cell carcinoma (RCC) is likely to metastasize to other organs, and is often resistant to conventional chemotherapies. Thymoquinone (TQ), a phytochemical derived from the seeds of Nigella sativa, has been shown to inhibit migration and metastasis in various cancers. In this study, we assessed the effect of TQ on the migratory activity of human RCC Caki-1 cells. We found that treatment with TQ reduced the proteolytic activity of matrix metalloproteinase-9 (MMP-9) in Caki-1 cells. TQ significantly repressed prostaglandin E2 (PGE2) production, its EP2 receptor expression as well as the activation of Akt and p38, the wellknown upstream signal proteins of MMP-9. In addition, treatment with butaprost, a PGE2 agonist, also induced MMP-9 activity and migration/invasion in Caki-1 cells. Moreover, pharmacological inhibitors of PI3K/Akt and p38 remarkably attenuated butaprostinduced Caki-1 cell migration and invasion, implying that activation of PI3K/Akt and p38 is a bridge between the PGE2-EP2 axis and MMP-9-dependent migration and invasion. Taken together, these data suggest that TQ is a promising anti-metastatic drug to treat advanced and metastatic RCC.

18.
Front Immunol ; 12: 807600, 2021.
Article in English | MEDLINE | ID: mdl-34987523

ABSTRACT

Cancer tissues are not just simple masses of malignant cells, but rather complex and heterogeneous collections of cellular and even non-cellular components, such as endothelial cells, stromal cells, immune cells, and collagens, referred to as tumor microenvironment (TME). These multiple players in the TME develop dynamic interactions with each other, which determines the characteristics of the tumor. Platelets are the smallest cells in the bloodstream and primarily regulate blood coagulation and hemostasis. Notably, cancer patients often show thrombocytosis, a status of an increased platelet number in the bloodstream, as well as the platelet infiltration into the tumor stroma, which contributes to cancer promotion and progression. Thus, platelets function as one of the important stromal components in the TME, emerging as a promising chemotherapeutic target. However, the use of traditional antiplatelet agents, such as aspirin, has limitations mainly due to increased bleeding complications. This requires to implement new strategies to target platelets for anti-cancer effects. In oral squamous cell carcinoma (OSCC) patients, both high platelet counts and low tumor-stromal ratio (high stroma) are strongly correlated with increased metastasis and poor prognosis. OSCC tends to invade adjacent tissues and bones and spread to the lymph nodes for distant metastasis, which is a huge hurdle for OSCC treatment in spite of relatively easy access for visual examination of precancerous lesions in the oral cavity. Therefore, locoregional control of the primary tumor is crucial for OSCC treatment. Similar to thrombocytosis, higher expression of podoplanin (PDPN) has been suggested as a predictive marker for higher frequency of lymph node metastasis of OSCC. Cumulative evidence supports that platelets can directly interact with PDPN-expressing cancer cells via C-type lectin-like receptor 2 (CLEC2), contributing to cancer cell invasion and metastasis. Thus, the platelet CLEC2-PDPN axis could be a pinpoint target to inhibit interaction between platelets and OSCC, avoiding undesirable side effects. Here, we will review the role of platelets in cancer, particularly focusing on CLEC2-PDPN interaction, and will assess their potentials as therapeutic targets for OSCC treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Blood Platelets/drug effects , Cell Movement/drug effects , Lectins, C-Type/antagonists & inhibitors , Membrane Glycoproteins/antagonists & inhibitors , Mouth Neoplasms/drug therapy , Platelet Aggregation Inhibitors/therapeutic use , Squamous Cell Carcinoma of Head and Neck/drug therapy , Animals , Antineoplastic Agents/adverse effects , Blood Platelets/metabolism , Humans , Lectins, C-Type/metabolism , Membrane Glycoproteins/metabolism , Molecular Targeted Therapy , Mouth Neoplasms/blood , Mouth Neoplasms/pathology , Neoplasm Invasiveness , Platelet Aggregation Inhibitors/adverse effects , Signal Transduction , Squamous Cell Carcinoma of Head and Neck/blood , Squamous Cell Carcinoma of Head and Neck/secondary , Tumor Microenvironment
19.
Cells ; 9(10)2020 09 29.
Article in English | MEDLINE | ID: mdl-33003453

ABSTRACT

Signal transducer and activator of transcription 3 (STAT3) functions as a major molecular switch that plays an important role in the communication between cytokines and kinases. In this role, it regulates the transcription of genes involved in various biochemical processes, such as proliferation, migration, and metabolism of cancer cells. STAT3 undergoes diverse post-translational modifications, such as the oxidation of cysteine by oxidative stress, the acetylation of lysine, or the phosphorylation of serine/threonine. In particular, the redox modulation of critical cysteine residues present in the DNA-binding domain of STAT3 inhibits its DNA-binding activity, resulting in the inactivation of STAT3-mediated gene expression. Accumulating evidence supports that STAT3 is a key protein that acts as a mediator of metabolism and mitochondrial activity. In this review, we focus on the post-translational modifications of STAT3 by oxidative stress and how the modification of STAT3 regulates cell metabolism, particularly in the metabolic pathways in cancer cells.


Subject(s)
Mitochondria/metabolism , Neoplasms/enzymology , Neoplasms/metabolism , Oxidative Stress/genetics , STAT3 Transcription Factor/metabolism , Acetylation , Cell Respiration/genetics , Cell Respiration/physiology , Humans , Methylation , Mitochondria/enzymology , Mitochondria/genetics , Neoplasms/genetics , Oxidation-Reduction , Peroxidases/metabolism , Phosphorylation , Protein Processing, Post-Translational/physiology , STAT3 Transcription Factor/antagonists & inhibitors , STAT3 Transcription Factor/genetics
20.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066004

ABSTRACT

The mortality rate of ovarian cancer (OC) worldwide increases with age. OC is an often fatal cancer with a curative rate of only 20-30%, as symptoms often appear after disease progression. Studies have reported that isolinderalactone (ILL), a furanosesquiterpene derivative extracted from the dried root of Lindera aggregata, can inhibit several cancer cell lines' growth. However, the molecular mechanisms underlying ILL activities in human OC cells remain unexplored. This study investigated the antitumor activities of ILL in human OC cells by inducing mitochondrial superoxide (mtSO) and JAK-signal transducer and activator of transcription 3 (STAT3)-dependent cell death. ILL caused cell death in SKOV-3 and OVCAR-3 cells and increased the cell proportion in the subG1 phase. Additionally, ILL significantly induced mtSO production and reduced ROS production. Moreover, ILL downregulated mitochondrial membrane potential and the expression levels of anti-apoptotic Bcl-2 family proteins and superoxide dismutase (SOD)2. Results showed that ILL decreased phosphorylation of serine 727 and tyrosine 705 of STAT3 and expression of survivin, a STAT3-regulated gene. Furthermore, ILL-induced cell death was reversed by pretreatment of Mito-TEMPO, a mitochondria-specific antioxidant. These results suggest that ILL induces cell death by upregulation of mtSO, downregulation of mitochondrial SOD2, and inactivation of the STAT3-mediated pathway.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/toxicity , Antineoplastic Agents/toxicity , Ovarian Neoplasms/metabolism , Sesquiterpenes/toxicity , Cell Death , Cell Line, Tumor , Female , Humans , Janus Kinases/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , STAT3 Transcription Factor/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxides/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...