Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Metab Syndr Relat Disord ; 21(4): 222-230, 2023 05.
Article in English | MEDLINE | ID: mdl-37083405

ABSTRACT

Background: Pediatric studies have shown associations between hepatic steatosis and total body fat, visceral fat, and lean mass. However, these associations have not been assessed simultaneously, leaving their relative importance unknown. Objective: To evaluate associations between hepatic steatosis and total-body adiposity, visceral adiposity, and lean mass in children. Method: In children at risk for fatty liver, hepatic steatosis, adipose, and lean mass were estimated with magnetic resonance imaging and dual-energy X-ray absorptiometry. Results: Two hundred twenty-seven children with mean age 12.1 years had mean percent body fat of 38.9% and mean liver fat of 8.4%. Liver fat was positively associated with total-body adiposity, visceral adiposity, and lean mass (P < 0.001), and negatively associated with lean mass percentage (P < 0.001). After weight adjustment, liver fat was only positively associated with measures of central adiposity (P < 0.001). Visceral adiposity also had the strongest association with liver fat (P < 0.001). Conclusions: In children, hepatic steatosis is more strongly associated with visceral adiposity than total adiposity, and the association of lean mass is not independent of weight or fat mass. These relationships may help guide the choice of future interventions to target hepatic steatosis.


Subject(s)
Adiposity , Fatty Liver , Humans , Child , Fatty Liver/diagnostic imaging , Fatty Liver/epidemiology , Liver/metabolism , Obesity/metabolism , Intra-Abdominal Fat/metabolism , Magnetic Resonance Imaging , Obesity, Abdominal/complications , Obesity, Abdominal/diagnostic imaging , Obesity, Abdominal/metabolism , Muscles/pathology
2.
Front Immunol ; 14: 1076772, 2023.
Article in English | MEDLINE | ID: mdl-36999019

ABSTRACT

E-cigarette use has rapidly increased as an alternative means of nicotine delivery by heated aerosolization. Recent studies demonstrate nicotine-containing e-cigarette aerosols can have immunosuppressive and pro-inflammatory effects, but it remains unclear how e-cigarettes and the constituents of e-liquids may impact acute lung injury and the development of acute respiratory distress syndrome caused by viral pneumonia. Therefore, in these studies, mice were exposed one hour per day over nine consecutive days to aerosol generated by the clinically-relevant tank-style Aspire Nautilus aerosolizing e-liquid containing a mixture of vegetable glycerin and propylene glycol (VG/PG) with or without nicotine. Exposure to the nicotine-containing aerosol resulted in clinically-relevant levels of plasma cotinine, a nicotine-derived metabolite, and an increase in the pro-inflammatory cytokines IL-17A, CXCL1, and MCP-1 in the distal airspaces. Following the e-cigarette exposure, mice were intranasally inoculated with influenza A virus (H1N1 PR8 strain). Exposure to aerosols generated from VG/PG with and without nicotine caused greater influenza-induced production in the distal airspaces of the pro-inflammatory cytokines IFN-γ, TNFα, IL-1ß, IL-6, IL-17A, and MCP-1 at 7 days post inoculation (dpi). Compared to the aerosolized carrier VG/PG, in mice exposed to aerosolized nicotine there was a significantly lower amount of Mucin 5 subtype AC (MUC5AC) in the distal airspaces and significantly higher lung permeability to protein and viral load in lungs at 7 dpi with influenza. Additionally, nicotine caused relative downregulation of genes associated with ciliary function and fluid clearance and an increased expression of pro-inflammatory pathways at 7 dpi. These results show that (1) the e-liquid carrier VG/PG increases the pro-inflammatory immune responses to viral pneumonia and that (2) nicotine in an e-cigarette aerosol alters the transcriptomic response to pathogens, blunts host defense mechanisms, increases lung barrier permeability, and reduces viral clearance during influenza infection. In conclusion, acute exposure to aerosolized nicotine can impair clearance of viral infection and exacerbate lung injury, findings that have implications for the regulation of e-cigarette products.


Subject(s)
Electronic Nicotine Delivery Systems , Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia, Viral , Mice , Animals , Humans , Nicotine/adverse effects , Interleukin-17/pharmacology , Respiratory Aerosols and Droplets , Lung , Gene Expression
3.
J Pediatr ; 233: 105-111.e3, 2021 06.
Article in English | MEDLINE | ID: mdl-33545191

ABSTRACT

OBJECTIVE: To evaluate the relationship between hepatic steatosis and bone mineral density (BMD) in children. In addition, to assess 25-hydroxyvitamin D levels in the relationship between hepatic steatosis and BMD. STUDY DESIGN: A community-based sample of 235 children was assessed for hepatic steatosis, BMD, and serum 25-hydroxyvitamin D. Hepatic steatosis was measured by liver magnetic resonance imaging proton density fat fraction (MRI-PDFF). BMD was measured by whole-body dual-energy x-ray absorptiometry. RESULTS: The mean age of the study population was 12.5 years (SD 2.5 years). Liver MRI-PDFF ranged from 1.1% to 40.1% with a mean of 9.3% (SD 8.5%). Across this broad spectrum of hepatic fat content, there was a significant negative relationship between liver MRI-PDFF and BMD z score (R = -0.421, P < .001). Across the states of sufficiency, insufficiency, and deficiency, there was a significant negative association between 25-hydroxyvitamin D and liver MRI-PDFF (P < .05); however, there was no significant association between vitamin D status and BMD z score (P = .94). Finally, children with clinically low BMD z scores were found to have higher alanine aminotransferase (P < .05) and gamma-glutamyl transferase (P < .05) levels compared with children with normal BMD z scores. CONCLUSIONS: Across the full range of liver MRI-PDFF, there was a strong negative relationship between hepatic steatosis and BMD z score. Given the prevalence of nonalcoholic fatty liver disease and the critical importance of childhood bone mineralization in protecting against osteoporosis, clinicians should prioritize supporting bone development in children with nonalcoholic fatty liver disease.


Subject(s)
Bone Density/physiology , Non-alcoholic Fatty Liver Disease/physiopathology , Absorptiometry, Photon , Adolescent , Alanine Transaminase/blood , Child , Female , Humans , Liver/diagnostic imaging , Magnetic Resonance Imaging , Male , Sampling Studies , Vitamin D/analogs & derivatives , Vitamin D/blood , gamma-Glutamyltransferase/blood
4.
Am J Physiol Lung Cell Mol Physiol ; 315(5): L638-L644, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30024307

ABSTRACT

Systemic immune activation is the hallmark of sepsis, which can result in endothelial injury and the acute respiratory distress syndrome (ARDS). The aim of this study was to investigate heterogeneity in sepsis-mediated endothelial permeability using primary human pulmonary microvascular endothelial cells (HPMECs) and the electric cell-substrate impedance sensing (ECIS) platform. After plasma removal, cellular component of whole blood from 35 intensive care unit (ICU) patients with early sepsis was diluted with media and stimulated with either lipopolysaccharide (LPS) or control media. Resulting supernatants were cocultured with HPMECs seeded on ECIS plates, and resistance was continually measured. A decrease in resistance signified increased permeability. After incubation, HPMECs were detached and cell adhesion proteins were quantified using flow cytometry and immunohistochemistry, and gene expression was analyzed with quantitative PCR. Significant heterogeneity in endothelial permeability after exposure to supernatants of LPS-stimulated leukocytes was identified. ICU patients with sepsis stratified into one of the following three groups: minimal (9/35, 26%), intermediate (18/35, 51%), and maximal (8/35, 23%) permeability. Maximal permeability was associated with increased intercellular adhesion molecule-1 protein and mRNA expression and decreased vascular endothelial-cadherin mRNA expression. These findings indicate that substantial heterogeneity in pulmonary endothelial permeability is induced by supernatants of LPS-stimulated leukocytes derived from patients with early sepsis and provide insights into some of the mechanisms that induce lung vascular injury. In addition, this in vitro model of lung endothelial permeability from LPS-stimulated leukocytes may be a useful method for testing therapeutic agents that could mitigate endothelial injury in early sepsis.


Subject(s)
Capillary Permeability , Endothelium, Vascular/pathology , Leukocytes/cytology , Lung/pathology , Microvessels/pathology , Sepsis/pathology , Aged , Antigens, CD/genetics , Antigens, CD/metabolism , Cadherins/genetics , Cadherins/metabolism , Cells, Cultured , Coculture Techniques , Endothelium, Vascular/metabolism , Female , Humans , Intercellular Adhesion Molecule-1/genetics , Intercellular Adhesion Molecule-1/metabolism , Leukocytes/drug effects , Lipopolysaccharides/pharmacology , Lung/drug effects , Lung/metabolism , Male , Microvessels/drug effects , Microvessels/metabolism , Middle Aged , Prospective Studies , Sepsis/metabolism
6.
Am J Physiol Lung Cell Mol Physiol ; 313(2): L193-L206, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28522559

ABSTRACT

Electronic cigarettes (e-cigarettes or e-cigs) are designed to heat and aerosolize mixtures of vegetable glycerin, propylene glycol, nicotine, and flavoring additives, thus delivering nicotine by inhalation in the absence of combustion. These devices were originally developed to facilitate smoking cessation and have been available in the United States for over a decade. Since 2010, e-cig use has expanded rapidly, especially among adolescents, despite a paucity of short- and long-term safety data. Patterns of use have shifted to include never smokers and many dual users of e-cigs and combustible tobacco products. Over the last several years, research into the potential toxicities of e-cig aerosols has grown exponentially. In the interim, regulatory policymakers across the world have struggled with how to regulate an increasingly diverse array of suppliers and products, against a backdrop of strong advocacy from users, manufacturers, and tobacco control experts. Herein we provide an updated review of the pulmonary toxicity profile of these devices, summarizing evidence from cell culture, animal models, and human subjects. We highlight the major gaps in our current understanding, emphasize the challenges confronting the scientific and regulatory communities, and identify areas that require more research in this important and rapidly evolving field.


Subject(s)
Electronic Nicotine Delivery Systems/adverse effects , Lung Injury/chemically induced , Animals , Humans , Nicotine/adverse effects , Smoking/adverse effects , Nicotiana/adverse effects
7.
mBio ; 6(5): e01265-15, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26443454

ABSTRACT

UNLABELLED: Stimulation of the antiviral response depends on the sensing of viral pathogen-associated molecular patterns (PAMPs) by specialized cellular proteins. During infection with RNA viruses, 5'-di- or -triphosphates accompanying specific single or double-stranded RNA motifs trigger signaling of intracellular RIG-I-like receptors (RLRs) and initiate the antiviral response. Although these molecular signatures are present during the replication of many viruses, it is unknown whether they are sufficient for strong activation of RLRs during infection. Immunostimulatory defective viral genomes (iDVGs) from Sendai virus (SeV) are among the most potent natural viral triggers of antiviral immunity. Here we describe an RNA motif (DVG(70-114)) that is essential for the potent immunostimulatory activity of 5'-triphosphate-containing SeV iDVGs. DVG(70-114) enhances viral sensing by the host cell independently of the long stretches of complementary RNA flanking the iDVGs, and it retains its stimulatory potential when transferred to otherwise inert viral RNA. In vitro analysis showed that DVG(70-114) augments the binding of RIG-I to viral RNA and promotes enhanced RIG-I polymerization, thereby facilitating the onset of the antiviral response. Together, our results define a new natural viral PAMP enhancer motif that promotes viral recognition by RLRs and confers potent immunostimulatory activity to viral RNA. IMPORTANCE: A discrete group of molecular motifs, including 5'-triphosphates associated with double-stranded RNA, have been identified as essential for the triggering of antiviral immunity. Most RNA viruses expose these motifs during their replication; however, successful viruses normally evade immune recognition and replicate to high levels before detection, indicating that unknown factors drive antiviral immunity. DVGs from SeV are among the most potent natural viral stimuli of the antiviral response known to date. These studies define a new natural viral motif present in DVGs that maximizes viral recognition by the intracellular sensor RIG-I, allowing fast and strong antiviral responses even in the presence of viral-encoded immune antagonists. This motif can be harnessed to increase the immunostimulatory potential of otherwise inert viral RNAs and represents a novel immunostimulatory enhancer that could be used in the development of vaccine adjuvants and antivirals.


Subject(s)
DEAD-box RNA Helicases/metabolism , Immunity, Innate , Pathogen-Associated Molecular Pattern Molecules/metabolism , RNA, Viral/metabolism , Sendai virus/immunology , Animals , Cell Line , DEAD Box Protein 58 , Humans , Macaca mulatta , Protein Binding , Receptors, Immunologic
SELECTION OF CITATIONS
SEARCH DETAIL
...