Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36767273

ABSTRACT

The unified bioaccessibility research group of Europe (BARGE) method (UBM) suggests using in vitro experimental conditions for simulating the release of chemicals from confined matrices, such as soils and sediments, in the human gastrointestinal tract. It contains comprehensive steps that simulate human digestion pathways and has good potential for application in the leaching of plastic additives from accidentally ingested plastic particles. However, its complexity could be a challenge for routine screening assessments of the migration of chemicals from consumer plastic products. In this study, the UBM was modified to assess the migration of plastic additives from consumer products with five model phthalate esters (i.e., dibutyl phthalate (DBP), benzyl butyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DNOP)) from polyvinyl chloride (PVC). The migration of phthalate esters was observed in four digestive phases (saliva, gastric, duodenal, and bile). Three separate experiments were conducted with the addition of (1) inorganic constituents only, (2) inorganic and organic constituents, and (3) inorganic and organic constituents in combination with digestive enzymes. While using enzymes with the UBM solution, the migrated mass for leached compounds was comparatively low (0.226 ± 0.04 µg) in most digestion phases, likely due to a self-generated coating of enzymes on the plastic materials. However, higher mass migration (0.301 ± 0.05) was observed when phthalate esters were analyzed in the UBM solution, excluding the enzymes. A ring test among six independent laboratories confirmed the robustness of the modified method. Therefore, we propose a simplified version of the original UBM designed mainly for the migration of inorganic elements using only the inorganic and organic components of the solution throughout all phases of digestion.


Subject(s)
Diethylhexyl Phthalate , Phthalic Acids , Humans , Esters , Dibutyl Phthalate , Plastics , Soil
2.
Article in English | MEDLINE | ID: mdl-33227952

ABSTRACT

Plasticizers are added to diverse consumer products including children's products. Owing to their potential for endocrine disruption, the use of phthalate plasticizers is restricted in many children's products. In this study, exposure to five phthalate esters (dibutylphthalate, di(2-ethylhexyl) phthalate (DEHP), diethyl phthalate, di-isobutyl phthalate, and diisononyl phthalate (DINP)) and an alternative (di-ethylhexyl adipate) was assessed by the use of children's products based on chemical analysis of 3345 products purchased during 2017 and 2019 in Korea. Plasticizers were found above the detection limits in 387 products, and DEHP and DINP were the two most predominantly detected plasticizers. Deterministic and probabilistic estimation of the margin of exposure at a screening level revealed that the use of children's products might be an important risk factor. However, it is also highly likely that the exposure could be overestimated, because the migration rate was estimated based solely on the content of plasticizers in children's products. Chemical migration is a key process determining the absorption of plasticizers from products; thus, further refinements in experimental determination or model estimation of the migration rate are required.


Subject(s)
Environmental Exposure , Phthalic Acids , Consumer Product Safety , Esters/analysis , Esters/chemistry , Humans , Phthalic Acids/analysis , Phthalic Acids/chemistry , Plasticizers/analysis , Plasticizers/chemistry , Republic of Korea
3.
Article in English | MEDLINE | ID: mdl-32942613

ABSTRACT

Human exposure to microplastics contained in food has become a significant concern owing to the increasing accumulation of microplastics in the environment. In this paper, we summarize the presence of microplastics in food and the analytical methods used for isolation and identification of microplastics. Although a large number of studies on seafood such as fish and shellfish exist, estimating the overall human exposure to microplastics via food consumption is difficult owing to the lack of studies on other food items. Analytical methods still need to be optimized for appropriate recovery of microplastics in various food matrices, rendering a quantitative comparison of different studies challenging. In addition, microplastics could be added or removed from ingredients during processing or cooking. Thus, research on processed food is crucial to estimate the contribution of food to overall human microplastic consumption and to mitigate this exposure in the future.


Subject(s)
Plastics , Water Pollutants, Chemical , Animals , Environmental Monitoring , Humans , Microplastics , Seafood/analysis , Spectroscopy, Fourier Transform Infrared , Water Pollutants, Chemical/analysis
4.
J Hazard Mater ; 161(2-3): 1095-102, 2009 Jan 30.
Article in English | MEDLINE | ID: mdl-18541365

ABSTRACT

Heavy metals in soil are considered a major environmental problem facing many countries around the world. Contamination of heavy metals occurs in soil due to both anthropogenic and natural causes. During the last two decades, extensive attention has been paid to the management and control of soil contamination. Decontamination of heavy metals in the soil has been a challenge for a long time. Microbial solubilization is one of promising process for remediation of heavy metals from contaminated sites. In this study, we attempted to treat soil contaminated with heavy metals using a facultative anaerobic bacterium Shewanella sp. (HN-41). The effect of carbon sources on the dissolution and conversion of heavy metals was first investigated using a defined medium containing 1 g of highly contaminated soil to select the most effective carbon source. Among three carbon sources, namely glucose, acetic acid and lactic acid, glucose at 10 mM was found to be the most effective. Therefore, glucose was used as a representative carbon source for the second part of the biological treatment in the defined medium, amended with humic acid (HA) and anthraquinone-2,6-disulfonate (ADQS), respectively. Among the heavy metals, iron and manganese exhibited the highest dissolution efficiency in the medium supplemented with glucose at 10mM. The rates of dissolution and removal of heavy metals were little bit higher in the medium amended with humic acid and ADQS. Per these results outlined above, a combined system of humic acid and ADQS incorporated with glucose was found to be effective for the removal of heavy metals from soil.


Subject(s)
Carbon/chemistry , Metals, Heavy/analysis , Shewanella/metabolism , Soil Pollutants/chemistry , Acetic Acid/chemistry , Anthraquinones/chemistry , Biodegradation, Environmental , Chemistry, Organic/methods , Glucose/chemistry , Humic Substances , Hydrogen-Ion Concentration , Lactic Acid/chemistry , Models, Chemical , Shewanella/chemistry , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...