Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(5)2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38475048

ABSTRACT

Citrus fruits were sorted based on external qualities, such as size, weight, and color, and internal qualities, such as soluble solid content (SSC), acidity, and firmness. Visible and near-infrared (VNIR) hyperspectral imaging techniques were used as rapid and nondestructive techniques for determining the internal quality of fruits. The applicability of the VNIR hyperspectral imaging technique for predicting the SSC in citrus fruits was evaluated in this study. A VNIR hyperspectral imaging system with a wavelength range of 400-1000 nm and 100 W light source was used to acquire hyperspectral images from citrus fruits in two orientations (i.e., stem and calyx ends). The SSC prediction model was developed using partial least-squares regression (PLSR). Spectrum preprocessing, effective wavelength selection through competitive adaptive reweighted sampling (CARS), and outlier detection were used to improve the model performance. The performance of each model was evaluated using the coefficient of determination (R2) and root mean square error (RMSE). In the present study, the PLSR model was developed using only a citrus cultivar. The SSC prediction CARS-PLSR model with outliers removed exhibited R2 and RMSE values of approximatively 0.75 and 0.56 °Brix, respectively. The results of this study are expected to be useful in similar fields such as agricultural and food post-harvest management, as well as in the development of an online system for determining the SSC of citrus fruits.


Subject(s)
Citrus , Spectroscopy, Near-Infrared , Spectroscopy, Near-Infrared/methods , Hyperspectral Imaging , Fruit , Algorithms , Least-Squares Analysis
2.
Sensors (Basel) ; 24(2)2024 Jan 05.
Article in English | MEDLINE | ID: mdl-38257409

ABSTRACT

Apples are widely cultivated in the Republic of Korea and are preferred by consumers for their sweetness. Soluble solid content (SSC) is measured non-destructively using near-infrared (NIR) spectroscopy; however, the SSC measurement error increases with the change in apple size since the distance between the light source and the near-infrared sensor is fixed. In this study, spectral characteristics caused by the differences in apple size were investigated. An optimal SSC prediction model applying partial least squares regression (PLSR) to three measurement conditions based on apple size was developed. The three optimal measurement conditions under which the Vis/NIR spectrum is less affected by six apple size levels (Levels I-VI) were selected. The distance from the apple center to the light source and that to the sensor were 125 and 75 mm (Distance 1), 123 and 75 mm (Distance 2), and 135 and 80 mm (Distance 3). The PLSR model applying multiplicative scatter correction pretreatment under Distance 3 measurement conditions showed the best performance for Level IV-sized apples (Rpre2 = 0.91, RMSEP = 0.508 °Brix). This study shows the possibility of improving the SSC prediction performance of apples by adjusting the distance between the light source and the NIR sensor according to fruit size.

3.
Sensors (Basel) ; 23(4)2023 Feb 09.
Article in English | MEDLINE | ID: mdl-36850558

ABSTRACT

A Tungsten-Halogen (TH) lamp is the most popular light source in NIR spectroscopy and hyperspectral imaging, which requires a warm-up to reach very high temperatures of up to 250 °C and take a long time for radiation stabilization. Consequently, it has a large enough volume to enable heat dissipation to prevent the thermal runaway of the electric circuit and turn out its power efficiency very low. These are major barriers for miniaturizing spectral systems and hyperspectral imaging devices. However, TH lamps can be replaced by pc-NIR LEDs in order to avoid high temperature and large volume. We compared the spectral emission of the available commercial pc-NIR LEDs under the same condition. As a replacement for the TH lamp, the VIS + NIR LED module was developed to combine a warm-white LED and pc-NIR LEDs. In order to feature out the availability of the VIS + NIR LED module against the TH lamp, they were used as the light source for evaluating the Soluble Solid Content (SSC) of an apple through VIS-NIR spectroscopy. The results show a remarkable feasibility in the performance of the partial least square (PLS) model using the VIS + NIR LED module; during PLS calibration, the correlation coefficient (R) values are 0.664 and 0.701, and the Mean Square Error (MSE) values are 0.681 and 0.602 for the TH lamp and VIS + NIR LED module, respectively. In VIS-NIR spectroscopy, this study indicates that the TH lamp could be replaceable with a warm-white LED and pc-NIR LEDs.

4.
ACS Appl Mater Interfaces ; 9(14): 12290-12298, 2017 Apr 12.
Article in English | MEDLINE | ID: mdl-28322040

ABSTRACT

Three-dimensional (3D) printing, combined with medical imaging technologies, such as computed tomography and magnetic resonance imaging (MRI), has shown a great potential in patient-specific tissue regeneration. Here, we successfully fabricated an ultrathin tubular free-form structure with a wall thickness of several tens of micrometers that is capable of providing sufficient mechanical flexibility. Such a thin geometry cannot easily be achieved by 3D printing alone; therefore, it was realized through a serial combination of processes, including the 3D printing of a sacrificial template, the dip coating of the biomaterial, and the removal of the inner template. We demonstrated the feasibility of this novel tissue engineering construct by conducting bile duct surgery on rabbits. Moving from a rational design based on MRI data to a successful surgical procedure for reconstruction, we confirmed that the presented method of fabricating scaffolds has the potential for use in customized bile duct regeneration. In addition to the specific application presented here, the developed process and scaffold are expected to have universal applicability in other soft-tissue engineering fields, particularly those involving vascular, airway, and abdominal tubular tissues.


Subject(s)
Printing, Three-Dimensional , Animals , Bile Ducts , Rabbits , Regeneration , Tissue Engineering , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...