Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 291
Filter
1.
J Sci Food Agric ; 104(1): 257-265, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37552783

ABSTRACT

BACKGROUND: Phenolic endocrine-disrupting chemicals (EDCs) are widespread and easily ingested through the food chain. They pose a serious threat to human health. Magnetic solid-phase extraction (MSPE) is an effective sample pre-treatment technology to determine traces of phenolic EDCs. RESULTS: Magnetic covalent organic framework (COF) (Fe3 O4 @COF) nanospheres were prepared and characterized. The efficient and selective extraction of phenolic EDCs relies on a large specific surface and the inherent porosity of COFs and hydrogen bonding, π-π, and hydrophobic interactions between COF shells and phenolic EDCs. Under optimal conditions, the proposed magnetic solid-phase extraction-high-performance liquid chromatography-ultra violet (MSPE-HPLC-UV) based on the metallic covalent organic framework method for phenolic EDCs shows good linearities (0.002-6 µg mL-1 ), with R2 of 0.995 or higher, and low limits of detection (6-1.200 ng mL-1 ). CONCLUSION: Magnetic covalent organic frameworks (Fe3 O4 @COFs) with good MSPE performance for phenolic EDCs were synthesized by the solvothermal method. The magnetic covalent organic framework-based MSPE-HPLC-UV method was applied successfully to determine phenolic EDCs in beverage and water samples with satisfactory recoveries (90.200%-123%) and relative standard deviations (2.100%-12.100%). © 2023 Society of Chemical Industry.


Subject(s)
Endocrine Disruptors , Metal-Organic Frameworks , Humans , Metal-Organic Frameworks/chemistry , Chromatography, High Pressure Liquid , Beverages , Solid Phase Extraction/methods , Phenols , Magnetic Phenomena , Water/chemistry , Limit of Detection
2.
ISME Commun ; 3(1): 117, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37964026

ABSTRACT

The world's deepest yongle blue hole (YBH) is characterized by sharp dissolved oxygen (DO) gradients, and considerably low-organic-carbon and high-inorganic-carbon concentrations that may support active autotrophic communities. To understand metabolic strategies of autotrophic communities for obtaining carbon and energy spanning redox gradients, we presented finer characterizations of microbial community, metagenome and metagenome-assembled genomes (MAGs) in the YBH possessing oxic, hypoxic, essentially anoxic and completely anoxic zones vertically. Firstly, the YBH microbial composition and function shifted across the four zones, linking to different biogeochemical processes. The recovery of high-quality MAGs belonging to various uncultivated lineages reflected high novelty of the YBH microbiome. Secondly, carbon fixation processes and associated energy metabolisms varied with the vertical zones. The Calvin-Benson-Bassham (CBB) cycle was ubiquitous but differed in affiliated taxa at different zones. Various carbon fixation pathways were found in the hypoxic and essentially anoxic zones, including the 3-hyroxypropionate/4-hydroxybutyrate (3HP/4HB) cycle affiliated to Nitrososphaeria, and Wood-Ljungdahl (WL) pathway affiliated to Planctomycetes, with sulfur oxidation and dissimilatory nitrate reduction as primary energy-conserving pathways. The completely anoxic zone harbored diverse taxa (Dehalococcoidales, Desulfobacterales and Desulfatiglandales) utilizing the WL pathway coupled with versatile energy-conserving pathways via sulfate reduction, fermentation, CO oxidation and hydrogen metabolism. Finally, most of the WL-pathway containing taxa displayed a mixotrophic lifestyle corresponding to flexible carbon acquisition strategies. Our result showed a vertical transition of microbial lifestyle from photo-autotrophy, chemoautotrophy to mixotrophy in the YBH, enabling a better understanding of carbon fixation processes and associated biogeochemical impacts with different oxygen availability.

3.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37889564

ABSTRACT

A Gram-stain-negative, facultative anaerobic, rod-shaped strain, named SDRW27T, was isolated from offshore seawater collected near Qingdao. Strain SDRW27T was able to grow at 16-37 °C (optimum, 28 °C), pH 6.0-9.0 (optimum, pH 6.0) and in the presence of 1-7 % (w/v) NaCl (optimum, 3 %). Phylogenetic analysis using 16S rRNA gene sequences indicated that strain SDRW27T was most closely related to Photobacterium toruni H01100410BT (97.89 % sequence similarity), Photobacterium andalusiense H01100409BT (97.89 %) and Photobacterium leiognathi ATCC 25521T (97.82 %). The predominant fatty acids were summed feature 3 (C16 : 1 ω7c and/or iso-C15 : 0 2-OH), summed feature 8 (C18 : 1 ω7c and/or C18 : 1 ω6c) and C16 : 0. The polar lipids of strain SDRW27T comprised phosphatidylglycerol, phosphatidylinositol dimannoside, phosphatidylcholine, phosphatidylethanolamine and three unidentified lipids. The major respiratory quinone was ubiquinone-8. The G+C content was 47.71 mol%. The genome size was 5.84 Mbp, including 85 contigs with an N50 value of 223 542. The average nucleotide identity (ANI) values of SDRW27T with its three most similar strains, P. toruni H01100410BT, P. andalusiense H01100409BT and P. leiognathi ATCC 25521T, were 71.36, 71.58 and 72.23 %, respectively (all lower than the 95-96 % ANI threshold), and the DNA-DNA hybridization (DDH) values were 20.4, 20.8 and 20.4 % (all lower than the 70 % DDH threshold). The obtained results of polyphasic analysis demonstrate that strain SDRW27T represents a novel species, for which the name Photobacterium obscurum sp. nov. is proposed. The type strain is SDRW27T (=MCCC 1K06286T=KCTC 82892T).


Subject(s)
Fatty Acids , Photobacterium , Fatty Acids/chemistry , Phospholipids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , Base Composition , Bacterial Typing Techniques , DNA, Bacterial/genetics , Sequence Analysis, DNA
4.
Front Immunol ; 14: 1239168, 2023.
Article in English | MEDLINE | ID: mdl-37753076

ABSTRACT

Advanced intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor of biliary epithelial cells, known for its extremely unfavorable prognosis. In the absence of intervention, patients typically survive for less than 5 months. Current guidelines from the Chinese Society of Clinical Oncology (CSCO), National Comprehensive Cancer Network (NCCN), and European Society for Medical Oncology (ESMO) recommend chemotherapy-based systemic therapy as the standard treatment for advanced ICC. However, the first-line regimen, consisting of gemcitabine in combination with cisplatin, generally results in a median survival of approximately one year, which is considered suboptimal. Significant progress has been made in radiotherapy techniques, molecular diagnostics, and tumor immune microenvironments. The integration of immune and radiation therapies has revolutionized treatment strategies for cholangiocarcinoma. Moreover, combined therapeutic regimens have shown promising results in improving survival rates among patients with advanced ICC. In this study, we present a case report of a 70-year-old male patient diagnosed with stage IV ICC, featuring metastases to the retroperitoneal, left adrenal, and left supraclavicular lymph nodes. The patient exhibited a high tumor mutational load, significant microsatellite instability, and hyper-expression of PD-L1 (90%), along with positive Epstein-Barr virus-encoded RNA (EBER). Pembrolizumab, a programmed cell death 1 (PD-1) inhibitor, was administered in conjunction with radiotherapy. As a result, considerable shrinkage and inactivation of the primary foci were observed, accompanied by the disappearance of metastases. Ultimately, the patient achieved complete remission and maintained progression-free survival for 41 months following the initial treatment. To the best of our knowledge, this represents the longest case of complete remission using a combination of immunotherapy and radiotherapy as a first-line regimen for the high tumor mutational load, microsatellite instability, and PD-L1 expression (90%) subtype of Epstein-Barr virus-associated ICC (EBVaICC). These findings suggest that the combination of PD-1 inhibitors with radiotherapy may serve as a promising therapeutic strategy for treating this particular cancer subtype.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Epstein-Barr Virus Infections , Male , Humans , Aged , B7-H1 Antigen/metabolism , Herpesvirus 4, Human/metabolism , Programmed Cell Death 1 Receptor/genetics , Microsatellite Instability , Epstein-Barr Virus Infections/complications , Epstein-Barr Virus Infections/pathology , Cholangiocarcinoma/genetics , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/drug therapy , Tumor Microenvironment
5.
Microbiol Spectr ; : e0114923, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37623326

ABSTRACT

The Sansha Yongle Blue Hole (SYBH), the deepest blue hole in the world, is an excellent habitat for revealing biogeochemical cycles in the anaerobic environment. However, how sulfur cycling is mediated by microorganisms in the SYBH hasn't been fully understood. In this study, the water layers of the SYBH were divided into oxic zone, hypoxic zone, anoxic zone I and II, and microbial-mediated sulfur cycling in the SYBH was comprehensively interpreted. The 16S rRNA genes/transcripts analyses showed that the microbial community structures associated with the sulfur cycling in each zone had distinctive features. Sulfur-oxidizing bacteria were mostly constituted by Gammaproteobacteria, Alphaproteobacteria, Campylobacterota, and Chlorobia above the anoxic zone I and sulfate-reducing bacteria were dominated by Desulfobacterota in anoxic zones. Metagenomic analyses showed that the sulfide-oxidation-related gene sqr and genes encoding the Sox system were mainly distributed in the anoxic zone I, while genes related to dissimilatory sulfate reduction and sulfur intermediate metabolite reduction were mainly distributed in the anoxic zone II, indicating different sulfur metabolic processes between these two zones. Moreover, sulfur-metabolism-related genes were identified in 81 metagenome-assembled genomes (MAGs), indicating a high diversity of microbial communities involved in sulfur cycling. Among them, three MAGs from the candidate phyla JdFR-76 and AABM5-125-24 with genes related to dissimilatory sulfate reduction exhibited distinctive metabolic features. Our results showed unique and novel microbial populations in the SYBH sulfur cycle correlated to the sharp redox gradients, revealing complex biogeochemical processes in this extreme environment. IMPORTANCE Oxygen-deficient regions in the global ocean are expanding rapidly and affect the growth, reproduction and ecological processes of marine organisms. The anaerobic water body of about 150 m in the Sansha Yongle Blue Hole (SYBH) provided a suitable environment to study the specific microbial metabolism in anaerobic seawater. Here, we found that the vertical distributions of the total and active communities of sulfur-oxidizing bacteria (SOB) and sulfate-reducing bacteria (SRB) were different in each water layer of the SYBH according to the dissolved oxygen content. Genes related to sulfur metabolism also showed distinct stratification characteristics. Furthermore, we have obtained diverse metagenome-assembled genomes, some of which exhibit special sulfur metabolic characteristics, especially candidate phyla JdFR-76 and AABM5-125-24 were identified as potential novel SRB. The results of this study will promote further understanding of the sulfur cycle in extreme environments, as well as the environmental adaptability of microorganisms in blue holes.

6.
Anal Sci ; 39(12): 1947-1956, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37589879

ABSTRACT

Accurate identification of deer-derived components is significant in food and drug authenticity. Over the years, several methods have been developed to authenticate these products; however, identifying whether female deer products are hybrids is challenging. In this study, the zinc finger protein X-linked (ZFX) gene sequences of sika deer (Cervus nippon), red deer (Cervus elaphus) and their hybrid offspring were amplified and sequenced, the X221 and X428 species-specific single nucleotide polymorphisms (SNP) loci were verified, and a tetra-primer amplification refractory mutation system (T-ARMS-PCR) assay was developed to identify the parent-of-origin of female sika deer, red deer, and their hybrid deer. The T-ARMS-PCR developed based on the X221 locus could identify sika deer, red deer, and their hybrid offspring according to the presence or absence of PCR product sizes of 486 bp, 352 bp, and 179 bp, respectively, just as X428 locus could identify sika deer, red deer, and their hybrid offspring according to the presence or absence of PCR product sizes of 549 bp, 213 bp, and 383 bp, respectively. Forty products labeled deer-derived ingredients randomly purchased were tested using this assay, and the results showed that the identification results based on the two SNP loci were utterly consistent with the actual sources. In addition, this method was found to be accurate, simple, convenient, and with high specificity, thus providing an essential technical reference for deer product species identification. It is also an important supplement to the identification methods of the original ingredients of existing deer products.


Subject(s)
Deer , Animals , Female , Deer/genetics , Polymerase Chain Reaction , Polymorphism, Single Nucleotide
7.
Microbiome ; 11(1): 175, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37550707

ABSTRACT

BACKGROUND: Hadal trenches (>6000 m) are the deepest oceanic regions on Earth and depocenters for organic materials. However, how these enigmatic microbial ecosystems are fueled is largely unknown, particularly the proportional importance of complex polysaccharides introduced through deposition from the photic surface waters above. In surface waters, Bacteroidetes are keystone taxa for the cycling of various algal-derived polysaccharides and the flux of carbon through the photic zone. However, their role in the hadal microbial loop is almost unknown. RESULTS: Here, culture-dependent and culture-independent methods were used to study the potential of Bacteroidetes to catabolize diverse polysaccharides in Mariana Trench waters. Compared to surface waters, the bathypelagic (1000-4000 m) and hadal (6000-10,500 m) waters harbored distinct Bacteroidetes communities, with Mesoflavibacter being enriched at ≥ 4000 m and Bacteroides and Provotella being enriched at 10,400-10,500 m. Moreover, these deep-sea communities possessed distinct gene pools encoding for carbohydrate active enzymes (CAZymes), suggesting different polysaccharide sources are utilised in these two zones. Compared to surface counterparts, deep-sea Bacteroidetes showed significant enrichment of CAZyme genes frequently organized into polysaccharide utilization loci (PULs) targeting algal/plant cell wall polysaccharides (i.e., hemicellulose and pectin), that were previously considered an ecological trait associated with terrestrial Bacteroidetes only. Using a hadal Mesoflavibacter isolate (MTRN7), functional validation of this unique genetic potential was demonstrated. MTRN7 could utilize pectic arabinans, typically associated with land plants and phototrophic algae, as the carbon source under simulated deep-sea conditions. Interestingly, a PUL we demonstrate is likely horizontally acquired from coastal/land Bacteroidetes was activated during growth on arabinan and experimentally shown to encode enzymes that hydrolyze arabinan at depth. CONCLUSIONS: Our study implies that hadal Bacteroidetes exploit polysaccharides poorly utilized by surface populations via an expanded CAZyme gene pool. We propose that sinking cell wall debris produced in the photic zone can serve as an important carbon source for hadal heterotrophs and play a role in shaping their communities and metabolism. Video Abstract.


Subject(s)
Bacteroidetes , Ecosystem , Bacteroidetes/genetics , Bacteroidetes/metabolism , Polysaccharides/metabolism , Pectins/metabolism
8.
Int J Antimicrob Agents ; 62(3): 106921, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37433387

ABSTRACT

OBJECTIVES: Carbapenem-resistant Klebsiella pneumoniae (CRKP) has widely disseminated globally, but its epidemiological characterization and clinical significance in paediatric patients are not well understood. In this study, we aimed to trace the dissemination dynamics of CRKP in the neonatal intensive care unit (NICU) of a tertiary hospital over a 10-y period. METHODS: We collected 67 non-duplicate K. pneumoniae species complex isolates from the NICU with patient metadata during 2009-2018. Antimicrobial susceptibility was determined by the agar or broth microdilution method. Risk factors for CRKP-positive patients were identified by univariate and multivariate analysis. Genetic characterization was dissected by whole-genome sequencing. Plasmid transmissibility, stability, and fitness were assessed. RESULTS: Thirty-four of 67 isolates (50.75%) were identified as CRKP. Premature rupture of membranes, gestational age, and invasive procedures are independent risk factors for CRKP-positive patients. The annual isolation rate of CRKP varied between 0% and 88.9%, and multiple clonal replacements were observed during the study period, which could be largely due to the division of the NICU. All but one CRKP produced IMP-4 carbapenemase, which was encoded by an IncN-ST7 epidemic plasmid, suggesting that the IncN-ST7 plasmid mediated the CRKP dissemination in the NICU over 10 y. The same plasmid was found in several CRKP isolates from adult patients, of which two ST17 isolates from the neurosurgery department shared a high homology with the ST17 isolates from the NICU, indicating possible cross-departmental transmission. CONCLUSION: Our study highlights the urgent need for infection control measures targeting high-risk plasmids like IncN-ST7.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Adult , Infant, Newborn , Humans , Child , Intensive Care Units, Neonatal , Klebsiella pneumoniae , Klebsiella Infections/epidemiology , beta-Lactamases/genetics , Plasmids/genetics , China/epidemiology , Carbapenem-Resistant Enterobacteriaceae/genetics , Carbapenems/pharmacology , Anti-Bacterial Agents/pharmacology , Microbial Sensitivity Tests
9.
Nat Commun ; 14(1): 2464, 2023 04 28.
Article in English | MEDLINE | ID: mdl-37117217

ABSTRACT

Adaptation to selective pressures is crucial for clinically important pathogens to establish epidemics, but the underlying evolutionary drivers remain poorly understood. The current epidemic of carbapenem-resistant Klebsiella pneumoniae (CRKP) poses a significant threat to public health. In this study we analyzed the genome sequences of 794 CRKP bloodstream isolates collected in 40 hospitals in China between 2014 and 2019. We uncovered a subclonal replacement in the predominant clone ST11, where the previously prevalent subclone OL101:KL47 was replaced by O2v1:KL64 over time in a stepwise manner. O2v1:KL64 carried a higher load of mobile genetic elements, and a point mutation exclusively detected in the recC of O2v1:KL64 significantly promotes recombination proficiency. The epidemic success of O2v1:KL64 was further associated with a hypervirulent sublineage with enhanced resistance to phagocytosis, sulfamethoxazole-trimethoprim, and tetracycline. The phenotypic alterations were linked to the overrepresentation of hypervirulence determinants and antibiotic genes conferred by the acquisition of an rmpA-positive pLVPK-like virulence plasmid and an IncFII-type multidrug-resistant plasmid, respectively. The dissemination of the sublineage was further promoted by more frequent inter-hospital transmission. The results collectively demonstrate that the expansion of O2v1:KL64 is correlated to a repertoire of genomic alterations convergent in a subpopulation with evolutionary advantages.


Subject(s)
Carbapenem-Resistant Enterobacteriaceae , Klebsiella Infections , Humans , Klebsiella pneumoniae/genetics , Point Mutation , Klebsiella Infections/drug therapy , Klebsiella Infections/epidemiology , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Carbapenem-Resistant Enterobacteriaceae/genetics , China/epidemiology , Carbapenems , beta-Lactamases/genetics
10.
Sci Rep ; 13(1): 6833, 2023 04 26.
Article in English | MEDLINE | ID: mdl-37100790

ABSTRACT

To investigate the effect of pentoxifylline (PTX) on Chlorine (Cl2)-induced acute lung injury (ALI) by single-cell RNA sequencing (scRNA-seq). Female BALB/c mice were exposed to Cl2 at 400 ppm for 15 min. H&E staining was used to observe the degree of lung injury. scRNA-seq was conducted to analysis of normal and Cl2-exposed mice lung tissues. Immunofluorescence was used to observe genes of interest. Thirty-two mice were randomly divided into four groups: Control, Cl2, Cl2+Fer-1, Cl2+PTX. TEM, WB and ELISA were used to detect ferroptosis-related indicators. The 5, 8, 10, 12, 16, 20 clusters were epithelial cells and 4, 15, 18, 19, 21 clusters were endothelial cells. Pseudo-time analysis revealed the differentiation trajectory of epithelial cells and key regulatory genes (Gclc, Bpifa1, Dnah5 and Dnah9) during the process of injury. Cell-cell communication analysis identified several important receptor-ligand complexes (Nrp1-Vegfa, Nrp2-Vegfa, Flt1-Vegfa and Flt4-Vegfa). Ferroptosis were found up-regulated in epithelial and endothelial cells by GSVA analysis. Highly expressed genes to which closely related ferroptosis were found by SCENIC analysis. PTX could significantly decrease the levels of MDA and abnormal high expression of solute carrier family 7 member 11 (SLC7A11, the key transporter of cystine) as well as increase the expression of GSH/GSSG and glutathione peroxidase 4 (GPX4) (p < 0.05). This study revealed novel molecular features of Cl2-induced ALI. PTX may be a potential specific drug by inhibiting the process of ferroptosis in epithelial and endothelial cells.


Subject(s)
Acute Lung Injury , Ferroptosis , Pentoxifylline , Female , Animals , Mice , Chlorine/adverse effects , Pentoxifylline/adverse effects , Endothelial Cells , Transcriptome , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/genetics , Glycoproteins , Phosphoproteins
11.
Environ Sci Pollut Res Int ; 30(19): 54742-54752, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36881233

ABSTRACT

This study researches the impact of terrain factors on chlorine gas diffusion processes based on SLAB model. Simulating the law of wind speed changing with altitude by calculating the real-time speed with vertical height combing actual terrain data, and integrating the influence of terrain on wind speed by using Reynolds Average Navier-Stokes (RANS) algorithm, K-turbulence model, and standard wall functions, then plotting the gas diffusion range in the map with terrain data according to the Gaussian-Cruger projection algorithm and dividing the hazardous areas according to the public exposure guidelines (PEG). The accidental chlorine gas releases near Lishan Mountain, Xi'an City, were simulated by the improved SLAB model. The results show that there are obvious differences analyzing contrastively the endpoint distance and area of chlorine gas dispersion under real terrain condition and ideal condition at different times; it can be found that the endpoint distance of the real terrain conditions is 1.34 km shorter than that of the ideal conditions at 300 s with terrain factors, and also the thermal area is 3,768,026m2 less than that of the ideal conditions. In addition, it can predict the specific number of casualties within different levels of harm at 2 min after chlorine gas dispersion, and casualties are constantly changing over time. The fusion of terrain factors can be used to optimize the SLAB model, which is expected to provide an important reference for effective rescue.


Subject(s)
Air Pollutants , Chlorine , Air Pollutants/analysis , Models, Theoretical , Computer Simulation , Wind
12.
BMC Pharmacol Toxicol ; 24(1): 12, 2023 02 27.
Article in English | MEDLINE | ID: mdl-36850013

ABSTRACT

OBJECTIVE: Chlorine is a chemical threat agent that can be harmful to humans. Inhalation of high levels of chlorine can lead to acute lung injury (ALI). Currently, there is no satisfactory treatment, and effective antidote is urgently needed. Pentoxifylline (PTX), a methylxanthine derivative and nonspecific phosphodiesterase inhibitor, is widely used for the treatment of vascular disorders. The present study was aimed to investigate the inhibitory effects of PTX on chlorine-induced ALI in rats. METHODS: Adult male Sprague-Dawley rats were exposed to 400 ppm Cl2 for 5 min. The histopathological examination was carried out and intracellular reactive oxygen species (ROS) levels were measured by the confocal laser scanning system. Subsequently, to evaluate the effect of PTX, a dose of 100 mg/kg was administered. The activities of superoxide dismutase (SOD) and the contents of malondialdehyde (MDA), glutathione (GSH), oxidized glutathione (GSSG) and lactate dehydrogenase (LDH) were determined by using commercial kits according to the manufacturer's instructions. Western blot assay was used to detect the protein expressions of SOD1, SOD2, catalase (CAT), hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF), occludin, E-cadherin, bcl-xl, LC 3, Beclin 1, PTEN-induced putative kinase 1 (PINK 1) and Parkin. RESULTS: The histopathological examination demonstrated that chlorine could destroy the lung structure with hemorrhage, alveolar collapse, and inflammatory infiltration. ROS accumulation was significantly higher in the lungs of rats suffering from inhaling chlorine (P<0.05). PTX markedly reduced concentrations of MAD and GSSG, while increased GSH (P<0.05). The protein expression levels of SOD1 and CAT also decreased (P<0.05). Furthermore, the activity of LDH in rats treated with PTX was significantly decreased compared to those of non-treated group (P<0.05). Additionally, the results also showed that PTX exerted an inhibition effect on protein expressions of HIF-1α, VEGF and occludin, and increased the level of E-cadherin (P<0.05). While the up-regulation of Beclin 1, LC 3II/I, Bcl-xl, and Parkin both in the lung tissues and mitochondria, were found in PTX treated rats (P<0.05). The other protein levels were decreased when treated with PTX (P<0.05). CONCLUSION: PTX could ameliorate chlorine-induced lung injury via inhibition effects on oxidative stress, hypoxia and autophagy, thus suggesting that PTX could serve as a potential therapeutic approach for ALI.


Subject(s)
Acute Lung Injury , Pentoxifylline , Rats , Adult , Humans , Animals , Male , Rats, Sprague-Dawley , Chlorine , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Vascular Endothelial Growth Factor A , Glutathione Disulfide , Beclin-1 , Occludin , Reactive Oxygen Species , Superoxide Dismutase-1 , Acute Lung Injury/chemically induced , Acute Lung Injury/drug therapy , Acute Lung Injury/prevention & control , Glutathione , Hypoxia , Ubiquitin-Protein Ligases
14.
Drug Chem Toxicol ; 46(6): 1100-1107, 2023 Nov.
Article in English | MEDLINE | ID: mdl-36220803

ABSTRACT

Inhalation of high concentrations of phosgene often causes pulmonary edema, which obstructs the airway and causes tissue hypoxia. There is currently no specific antidote. This study was performed to investigate the effect behind pentoxifylline (PTX) treatment for phosgene-induced lung injury in rat models. Rats were exposed to phosgene. The protein levels of hypoxia-inducible factor-1α (HIF-1α), vascular endothelial growth factor (VEGF), and occludin proteins in lung tissue were determined. The effect of both prophylactic and therapeutic administration of PTX (50 mg/kg and 100 mg/kg) was evaluated. The lung permeability index and HIF-1α protein level increased, the arterial blood oxygenation index (PaO2/FIO2 ratio) and occludin protein level decreased significantly 6 h after phosgene exposure (P < 0.05). PTX exerted protective effects by HIF-1α-VEGF-occludin signaling pathway to some extent. Moreover, prophylactic, but not therapeutic administration of PTX (100 mg/kg), exhibited a significant protective effect. Pretreatment with PTX protected against phosgene-induced lung injury, possibly by inhibiting differential expression of HIF-1α, VEGF, and occludin.


Subject(s)
Lung Diseases , Lung Injury , Pentoxifylline , Phosgene , Rats , Animals , Lung Injury/chemically induced , Lung Injury/drug therapy , Lung Injury/prevention & control , Pentoxifylline/pharmacology , Pentoxifylline/therapeutic use , Phosgene/toxicity , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/metabolism , Occludin/genetics , Vascular Endothelial Growth Factors , Hypoxia/chemically induced , Hypoxia/drug therapy
15.
Acta Pharmaceutica Sinica ; (12): 1328-1337, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-978695

ABSTRACT

Establish a production line with controllable process and high intelligence, contribute to improve the quality and production efficiency of aconite processed by microwave, and promote the transformation and application of aconite processed by microwave. According to the principle of aconite detoxification and the characteristics of industrial microwave equipment, an industrial production line of aconite processed by microwave was established with diester alkaloids and monoester alkaloids as indicators, and pilot production was carried out. At the same time, the content of active constituents and efficacy were compared with that of the main processed products, such as Shengfupian, Baifupian and Heishunpian. The results showed that the industrial production of aconite processed by microwave can be divided into two stages: "Liquid seal to detoxification - drying and puffing". The content of monoester alkaloids in 10 batches of aconite processed by microwave was 0.071%-0.166% and the content of diester alkaloids was 0.004%-0.016%, which met the relevant requirements of the Chinese Pharmacopoeia in 2020. Compared with Heishunpian and Baifupian, the retention rate of the effective components of aconite processed by microwave was higher. Pharmacological experiments showed that aconite processed by microwave not only retained the anti-inflammatory and analgesic activities of Heishunpian and Baifupian, but also significantly increased the levels of leukocytes and lymphocytes in mice with liver cancer chemotherapy, enhanced the CD4/CD8 ratio in spleen cells of mice (P < 0.05), thus regulating the body's immunity. However, this effect of Baifupian was weak, while Heishunpian and Shengfupian had no such effect. Through the above research, this study established microwave processing line with controllable process and high intelligence, as well produced the aconite processed by microwave with low toxicity and stable quality. It laid a foundation for the industrialized continuous production and clinical positioning of aconite by microwave processed, and provided scientific support for the development and application of microwave technology in the field of traditional Chinese medicine. All animal experiments in this study were reviewed and approved by the Experimental Animal Ethics Committee of Chengdu University of Traditional Chinese Medicine before being carried out (Approval No. 2020-28).

16.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-989944

ABSTRACT

Objective:To observe the effect of rhGLP-1 (7-36) on Akt/GSK3 signaling pathway in hepatocytes.Methods:Human HL7702 cell line was cultured to the logarithmic growth stage and divided into experimental group and blank control group. The cultures were incubated with 100nM medium containing rhglp-1 (7-36) and without rhglp-1 (7-36) for 90min. The levels of Akt, Glycogen synthase Kinase 3 (GSK3) and Glycogen synthase (GS) in the two groups were detected by Western Blot.Results:Compared with blank control group, the protein expression of p-Akt (Thr308) in experimental group (1.81±0.28) was significantly increased ( P=0.01), but the protein expression of Akt and p-Akt (Ser473) was not significantly changed. The protein expression levels of p-GSK3α (Ser21) (1.27±0.09) and p-GSK3β (Ser9) (1.24±0.09) in the experimental group were significantly increased ( P=0.003, 0.002), while the protein expression levels of GSK3α and GSK3β were not significantly changed. The protein expression level of p-GS (Ser641) (0.70±0.16) was decreased in the experimental group ( P=0.03), but the protein expression level of GS did not change significantly. Conclusion:Glp-1 can inhibit GSK3/GS signaling pathway, activate GS activity and promote glycogen synthesis.

17.
Chinese Journal of Pathology ; (12): 1261-1265, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1012403

ABSTRACT

Objective: To investigate the expression of TRPS1 in salivary gland-type breast carcinoma and its clinical application. Methods: A total of 30 cases of salivary gland-type breast carcinoma diagnosed from May 2015 to November 2022 at the Department of Pathology of the First Affiliated Hospital of Nanjing Medical University were collected. The expression of TRPS1 was detected by immunohistochemistry and compared with that of GATA3. TRPS1 and GATA3 expression in 24 cases of primary salivary gland carcinoma. Results: There were 10 cases of breast secretory carcinoma, aged 21-61 years (median 53.5 years), with the size ranging from 0.9-2.2 cm (median 1.6 cm), 2 of which were accompanied by axillary nodal macrometastasis. All patients were alive after 2-55 months of follow-up (median 29.5 months, mean 29.7 months). There were 20 cases of breast adenoid cystic carcinoma, aged 36-77 years (median 53.5 years), with the size ranging from 1.2-5.5 cm (median 2.5 cm), 3 of which were accompanied by axillary nodal macrometastasis. All patients were alive after 3-92 months of follow-up (median 22.5 months, mean 31.7 months), and 1 patient had lung metastasis 15 months after surgery. The medium/high expression ratio of TRPS1 in breast secretory carcinoma was 10/10, which was higher than that of GATA3 (7/10). TRPS1 was also positive in the 2 cases with lymph node metastases. The medium/high expression rate of TRPS1 in breast adenoid cystic carcinoma was 20/20, which was significantly higher than that of GATA3 (2/20). TRPS1 was highly expressed in both classic and solid subtypes, while GATA3 was only expressed in a few cases of the classic subtype. TRPS1 was also positive in 3 cases with lymph node metastases and 1 case of the pulmonary metastases. The expression level of TRPS1 was the same in 1 case before and after neoadjuvant chemotherapy. In addition, TRPS1 was positive in parotid secretory carcinoma and adenoid cystic carcinoma. The medium/high expression rate of TRPS1 in parotid secretory carcinoma (6/6) was higher than that of GATA3 (2/6), and the medium/high expression rate of TRPS1 in parotid adenoid cystic carcinoma (17/18) was higher than that of GATA3 (2/18). Conclusions: The expression of TRPS1 is highly sensitive to salivary gland-type breast carcinoma, especially in GATA3-negative solid subtype of adenoid cystic carcinoma, which plays an important role in clinical practice.


Subject(s)
Humans , Female , Carcinoma, Adenoid Cystic/pathology , Lymphatic Metastasis , Salivary Gland Neoplasms/pathology , Parotid Neoplasms , Lung Neoplasms , Breast Neoplasms , Parotid Gland , Repressor Proteins
18.
Chinese Journal of Biotechnology ; (12): 4621-4634, 2023.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-1008046

ABSTRACT

Sialyllactose is one of the most abundant sialylated oligosaccharides in human milk oligosaccharides (HMOs), which plays an important role in the healthy development of infants and young children. However, its efficient and cheap production technology is still lacking presently. This study developed a two-step process employing multiple-strains for the production of sialyllactose. In the first step, two engineered strains, E. coli JM109(DE3)/ pET28a-BT0453 and JM109(DE3)/pET28a-nanA, were constructed to synthesize the intermediate N-acetylneuraminic acid. When the ratio of the biomass of the two engineered strains was 1:1 and the reaction time was 32 hours, the maximum yield of N-acetylneuraminic acid was 20.4 g/L. In the second step, E. coli JM109(DE3)/ pET28a-neuA, JM109(DE3)/ pET28a-nst and Baker's yeast were added to the above fermentation broth to synthesize 3'-sialyllactose (3'-SL). Using optimal conditions including 200 mmol/L N-acetyl-glucosamine and lactose, 150 g/L Baker's yeast, 20 mmol/L Mg2+, the maximum yield of 3'-SL in the fermentation broth reached 55.04 g/L after 24 hours of fermentation and the conversion rate of the substrate N-acetyl-glucosamine was 43.47%. This research provides an alternative technical route for economical production of 3'-SL.


Subject(s)
Child , Humans , Child, Preschool , N-Acetylneuraminic Acid , Escherichia coli/genetics , Lactose , Fermentation , Saccharomyces cerevisiae , Oligosaccharides , Glucosamine
19.
Article in English | WPRIM (Western Pacific) | ID: wpr-1007846

ABSTRACT

OBJECTIVE@#To investigate the distribution and antimicrobial susceptibility of causative microorganisms recovered from patients with intra-abdominal infections (IAIs).@*METHODS@#A total of 2,926 bacterial and fungal strains were identified in samples collected from 1,679 patients with IAIs at the Peking Union Medical College Hospital between 2011 and 2021. Pathogenic bacteria and fungi were identified using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. Antimicrobial susceptibility testing (AST) was performed using the VITEK 2 compact system and the Kirby-Bauer method. AST results were interpreted based on the M100-Ed31 clinical breakpoints of the Clinical and Laboratory Standards Institute.@*RESULTS@#Of the 2,926 strains identified, 49.2%, 40.8%, and 9.5% were gram-negative bacteria, gram-positive bacteria, and fungi, respectively. Escherichia coli was the most prevalent pathogen in intensive care unit (ICU) and non-ICU patients; however, a significant decrease was observed in the isolation of E. coli between 2011 and 2021. Specifically, significant decreases were observed between 2011 and 2021 in the levels of extended-spectrum β-lactamase (ESBL)-producing E. coli (from 76.9% to 14.3%) and Klebsiella pneumoniae (from 45.8% to 4.8%). Polymicrobial infections, particularly those involving co-infection with gram-positive and gram-negative bacteria, were commonly observed in IAI patients. Moreover, Candida albicans was more commonly isolated from hospital-associated IAI samples, while Staphylococcus epidermidis had a higher ratio in community-associated IAIs. Additionally, AST results revealed that most antimicrobial agents performed better in non-ESBL-producers than in ESBL-producers, while the overall resistance rates (56.9%-76.8%) of Acinetobacter baumanmii were higher against all antimicrobial agents than those of other common gram-negative bacteria. Indeed, Enterococcus faecium, Enterococcus faecalis, S. epidermidis, and S. aureus were consistently found to be susceptible to vancomycin, teicoplanin, and linezolid. Similarly, C. albicans exhibited high susceptibility to all the tested antifungal drugs.@*CONCLUSION@#The distribution and antimicrobial susceptibility of the causative microorganisms from patients with IAIs were altered between 2011 and 2021. This finding is valuable for the implementation of evidence-based antimicrobial therapy and provides guidance for the control of hospital infections.


Subject(s)
Humans , Anti-Bacterial Agents , Escherichia coli , Gram-Negative Bacteria , Gram-Positive Bacteria , Retrospective Studies , Staphylococcus aureus , Intraabdominal Infections/epidemiology , Candida albicans , Coinfection
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-970534

ABSTRACT

Liquid chromatography-mass spectrometry was employed to analyze the chemical components in Curcuma longa tuberous roots(HSYJ), C. longa tuberous roots processed with vinegar(CHSYJ), and rat serum after the administration. The active components of HSYJ and CHSYJ absorbed in serum were identified based on the secondary spectrum of database and literature. The targets of primary dysmenorrhea was screened out from database. The protein-protein interaction network analysis, gene ontology(GO) functional annotation, and Kyoto Encyclopedia of Genes and Genomes(KEGG) pathway enrichment analysis were performed for the common targets shared by the drug active components in serum and primary dysmenorrhea, and the component-target-pathway network was constructed. AutoDock was used to conduct molecular docking between the core components and targets. A total of 44 chemical components were identified from HSYJ and CHSYJ, including 18 absorbed in serum. On the basis of network pharmacology, we identified 8 core components(including procurcumenol, isobutyl p-hydroxybenzoate, ferulic acid, and zedoarondiol) and 10 core targets \[including interleukin-6(IL-6), estrogen receptor 1(ESR1), and prostaglandin-endoperoxide synthase 2(PTGS2)\]. The core targets were mainly distributed in the heart, liver, uterus, and smooth muscle. The molecular docking results showed that the core components were well bound to the core targets, indicating that HSYJ and CHSYJ may exert therapeutic effect on primary dysmenorrhea via estrogen, ovarian steroidogenesis, tumor necrosis factor(TNF), hypoxia-inducible factor-1(HIF-1), IL-17 and other signaling pathways. This study clarifies the HSYJ and CHSYJ components absorbed in serum, as well as the corresponding mechanism, providing a reference for further elucidating the therapeutic material basis and clinical application of HSYJ and CHSYJ.


Subject(s)
Female , Humans , Animals , Rats , Acetic Acid , Curcuma , Dysmenorrhea , Molecular Docking Simulation , Tumor Necrosis Factor-alpha , Cyclooxygenase 2
SELECTION OF CITATIONS
SEARCH DETAIL
...