Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale Adv ; 2(1): 304-314, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-36133981

ABSTRACT

Nanoparticle based sensors are good alternatives for non-enzymatic sensing applications due to their high stability, superior photoluminescence, biocompatibility and ease of fabrication, with the only disadvantage being the cost of the synthesis process (owing to the expensive precursors and infrastructure). For the first time, we report the design of an immunosensor employing streptavidin conjugated copper nanocluster, developed at a much lower cost compared to other nanomaterials like noble metal nanoparticles and quantum dots. Using in silico tools, we have tried to establish the dynamics of conjugation of nanocluster to the streptavidin protein, based on EDC-NHS coupling. The computational simulations have successfully explained the crucial role played by the components of the immunosensor leading to an efficient design capable of high sensitivity. In order to demonstrate the functioning of the Copper Nanocluster ImmunoSensor (CuNIS), HIV-1 p24 biomarker test was chosen as the model assay. The immunosensor was able to achieve an analytical limit of detection of 23.8 pg mL-1 for HIV-1 p24 with a linear dynamic range of 27-1000 pg mL-1. When tested with clinical plasma samples, CuNIS based p24 assay showed 100% specificity towards HIV-1 p24. With the capability of multiplexed detection and a cost of fabrication 100 times lower than that of the conventional metal nanoclusters, CuNIS has the potential to be an essential low-cost diagnostic tool in resource-limited settings.

2.
Nanoscale Adv ; 1(1): 273-280, 2019 Jan 15.
Article in English | MEDLINE | ID: mdl-36132469

ABSTRACT

We describe a novel application of Metal Enhanced Fluorescence (MEF) to immunoassays for boosting the signal through a single step modification of the europium nanoparticle based immunoassay with addition of gold nanoparticles. The new limit of detection was found to be 0.19 pg mL-1 which was much lower than that of the conventional assay which was around 1.80 pg mL-1, thus achieving a ten-fold increase in the limit of detection of p24, an early biomarker for HIV infections. Real world applications of the new technique were demonstrated with the commercially available Perkin Elmer Alliance kits greatly improving their sensitivity limits, thus demonstrating that the sensitivity and reproducibility of this approach are as good as those of high-end, sensitive immunoassays. The results of this study pave the way for the development of a highly sensitive screening protocol based on any fluorescent nanoparticle based immunoassay.

3.
Sci Rep ; 7(1): 7149, 2017 08 02.
Article in English | MEDLINE | ID: mdl-28769052

ABSTRACT

We have engineered streptavidin labelled Europium doped fluorescent silica nanoparticles which significantly increased sensitivity without compromising the specificity of the immunoassay. As a proof of concept, a time resolved fluorescence based sandwich immunoassay was developed to detect HIV-1 p24 antigen in clinical specimens. The detection range of the silica nanoparticle based immunoassay (SNIA) was found to be between 0.02 to 500 pg/mL in a linear dose dependent manner. SNIA offers 1000 fold enhancement over conventional colorimetric ELISA. Testing of plasma samples that were HIV negative showed no false positive results in the detection of HIV-1 p24 antigen. This highly sensitive p24 assay can help improve blood safety by reducing the antibody negative window period in blood donors in resource limited settings where nucleic acid testing is not practical or feasible. This technology can also be easily transferred to a lab-on-a-chip platform for use in resource limited settings and can also be easily adopted for the detection of other antigens.


Subject(s)
HIV Infections/diagnosis , HIV Infections/virology , HIV-1 , Immunoassay , Nanoparticles , Silicon Dioxide , Antigens, Viral/immunology , Carboxylic Acids/chemistry , Europium/chemistry , HIV Core Protein p24/immunology , HIV Infections/immunology , HIV-1/immunology , Humans , Immunoassay/methods , Nanoparticles/chemistry , Silicon Dioxide/chemistry , Spectroscopy, Fourier Transform Infrared , Thermogravimetry/methods
4.
MethodsX ; 3: 35-42, 2016.
Article in English | MEDLINE | ID: mdl-27408826

ABSTRACT

The aqueous based reflux method useful for the green synthesis of nanostructures is described in detail. In this method, the parameters: the order of addition of precursors, the time of the reflux and the cooling rate should be optimized in order to obtain the desired phase and morphology of the nanostructures. The application of this method is discussed with reference to the synthesis of CZTS nanoparticles which have great potential as an absorber material in the photovoltaic devices. The highlights of this method are:•Simple.•Low cost.•Aqueous based.

SELECTION OF CITATIONS
SEARCH DETAIL
...