Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 42(2): 325-348, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34819339

ABSTRACT

Globally, more than 67 million people are living with the effects of ischemic stroke. Importantly, many stroke survivors develop a chronic inflammatory response that may contribute to cognitive impairment, a common and debilitating sequela of stroke that is insufficiently studied and currently untreatable. 2-Hydroxypropyl-ß-cyclodextrin (HPßCD) is an FDA-approved cyclic oligosaccharide that can solubilize and entrap lipophilic substances. The goal of the present study was to determine whether the repeated administration of HPßCD curtails the chronic inflammatory response to stroke by reducing lipid accumulation within stroke infarcts in a distal middle cerebral artery occlusion mouse model of stroke. To achieve this goal, we subcutaneously injected young adult and aged male mice with vehicle or HPßCD 3 times per week, with treatment beginning 1 week after stroke. We evaluated mice at 7 weeks following stroke using immunostaining, RNA sequencing, lipidomic, and behavioral analyses. Chronic stroke infarct and peri-infarct regions of HPßCD-treated mice were characterized by an upregulation of genes involved in lipid metabolism and a downregulation of genes involved in innate and adaptive immunity, reactive astrogliosis, and chemotaxis. Correspondingly, HPßCD reduced the accumulation of lipid droplets, T lymphocytes, B lymphocytes, and plasma cells in stroke infarcts. Repeated administration of HPßCD also preserved NeuN immunoreactivity in the striatum and thalamus and c-Fos immunoreactivity in hippocampal regions. Additionally, HPßCD improved recovery through the protection of hippocampal-dependent spatial working memory and reduction of impulsivity. These results indicate that systemic HPßCD treatment following stroke attenuates chronic inflammation and secondary neurodegeneration and prevents poststroke cognitive decline.SIGNIFICANCE STATEMENT Dementia is a common and debilitating sequela of stroke. Currently, there are no available treatments for poststroke dementia. Our study shows that lipid metabolism is disrupted in chronic stroke infarcts, which causes an accumulation of uncleared lipid debris and correlates with a chronic inflammatory response. To our knowledge, these substantial changes in lipid homeostasis have not been previously recognized or investigated in the context of ischemic stroke. We also provide a proof of principle that solubilizing and entrapping lipophilic substances using HPßCD could be an effective strategy for treating chronic inflammation after stroke and other CNS injuries. We propose that using HPßCD for the prevention of poststroke dementia could improve recovery and increase long-term quality of life in stroke sufferers.


Subject(s)
2-Hydroxypropyl-beta-cyclodextrin/therapeutic use , Brain/drug effects , Infarction, Middle Cerebral Artery/drug therapy , Inflammation/drug therapy , Age Factors , Animals , Brain/metabolism , DNA-Binding Proteins/metabolism , Disease Models, Animal , Infarction, Middle Cerebral Artery/metabolism , Inflammation/metabolism , Male , Mice , Nerve Tissue Proteins/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Treatment Outcome
2.
eNeuro ; 5(5)2018.
Article in English | MEDLINE | ID: mdl-30417081

ABSTRACT

Here we used mouse models of heart and brain ischemia to compare the inflammatory response to ischemia in the heart, a protein rich organ, to the inflammatory response to ischemia in the brain, a lipid rich organ. We report that ischemia-induced inflammation resolves between one and four weeks in the heart compared to between eight and 24 weeks in the brain. Importantly, we discovered that a second burst of inflammation occurs in the brain between four and eight weeks following ischemia, which coincided with the appearance of cholesterol crystals within the infarct. This second wave shares a similar cellular and molecular profile with atherosclerosis and is characterized by high levels of osteopontin (OPN) and matrix metalloproteinases (MMPs). In order to test the role of OPN in areas of liquefactive necrosis, OPN-/- mice were subjected to brain ischemia. We found that at seven weeks following stroke, the expression of pro-inflammatory proteins and MMPs was profoundly reduced in the infarct of the OPN-/- mice, although the number of cholesterol crystals was increased. OPN-/- mice exhibited faster recovery of motor function and a higher number of neuronal nuclei (NeuN) positive cells in the peri-infarct area at seven weeks following stroke. Based on these findings we propose that the brain liquefies after stroke because phagocytic cells in the infarct are unable to efficiently clear cholesterol rich myelin debris, and that this leads to the perpetuation of an OPN-dependent inflammatory response characterized by high levels of degradative enzymes.


Subject(s)
Atherosclerosis/complications , Brain Ischemia/complications , Brain/pathology , Osteopontin/pharmacology , Stroke/complications , Animals , Brain/metabolism , Disease Models, Animal , Inflammation/metabolism , Macrophages/metabolism , Male , Mice, Inbred C57BL , Neurodegenerative Diseases/pathology , Stroke/metabolism
3.
Genome Biol Evol ; 9(6)2017 06 01.
Article in English | MEDLINE | ID: mdl-28575204

ABSTRACT

The Androgen-binding protein ( Abp ) gene region of the mouse genome contains 64 genes, some encoding pheromones that influence assortative mating between mice from different subspecies. Using CNVnator and quantitative PCR, we explored copy number variation in this gene family in natural populations of Mus musculus domesticus ( Mmd ) and Mus musculus musculus ( Mmm ), two subspecies of house mice that form a narrow hybrid zone in Central Europe. We found that copy number variation in the center of the Abp gene region is very common in wild Mmd , primarily representing the presence/absence of the final duplications described for the mouse genome. Clustering of Mmd individuals based on this variation did not reflect their geographical origin, suggesting no population divergence in the Abp gene cluster. However, copy number variation patterns differ substantially between Mmd and other mouse taxa. Large blocks of Abp genes are absent in Mmm , Mus musculus castaneus and an outgroup, Mus spretus , although with differences in variation and breakpoint locations. Our analysis calls into question the reliance on a reference genome for interpreting the detailed organization of genes in taxa more distant from the Mmd reference genome. The polymorphic nature of the gene family expansion in all four taxa suggests that the number of Abp genes, especially in the central gene region, is not critical to the survival and reproduction of the mouse. However, Abp haplotypes of variable length may serve as a source of raw genetic material for new signals influencing reproductive communication and thus speciation of mice.


Subject(s)
Androgen-Binding Protein/genetics , DNA Copy Number Variations , Genetic Speciation , Mice/classification , Mice/genetics , Animals , Base Sequence , Gene Duplication , Mice, Inbred C57BL , Mice, Inbred Strains , Polymerase Chain Reaction
4.
Genetics ; 205(4): 1517-1527, 2017 04.
Article in English | MEDLINE | ID: mdl-28159752

ABSTRACT

The house mouse Androgen-binding protein (Abp) gene family is comprised of 64 paralogs, 30 Abpa and 34 Abpbg, encoding the alpha (ABPA) and beta-gamma (ABPBG) protein subunits that are disulfide-bridged to form dimers in secretions. Only 14 Abp genes are expressed in distinct patterns in the lacrimal (11) and submandibular glands (3). We created a knockout mouse line lacking two of the three genes expressed in submandibular glands, Abpa27 and Abpbg27, by replacing them with the neomycin resistance gene. The knockout genotype (-/-) showed no Abpa27 or Abpbg27 transcripts in submandibular gland complementary DNA (cDNA) libraries and there was a concomitant lack of protein expression of ABPA27 and ABPBG27 in the -/- genotype saliva, shown by elimination of these two proteins from the saliva proteome and the loss of cross-reactive material in the acinar cells of the submandibular glands. We also observed a decrease in BG26 protein in the -/- animals, suggesting monomer instability. Overall, we observed no major phenotypic changes in the -/- genotype, compared with their +/+ and +/- siblings raised in a laboratory setting, including normal growth curves, tissue histology, fecundity, and longevity. The only difference is that male and female C57BL/6 mice preferred saliva of the opposite sex containing ABP statistically significantly more than saliva of the opposite sex without ABP in a Y-maze test. These results show for the first time that mice can sense the presence of ABP between saliva targets with and without ABPs, and that they spend more time investigating the target containing ABP.


Subject(s)
Androgen-Binding Protein/genetics , Phenotype , Salivary Glands/metabolism , Androgen-Binding Protein/metabolism , Animals , Female , Fertility , Longevity , Male , Mating Preference, Animal , Maze Learning , Mice , Proteome , Saliva/metabolism
5.
PLoS One ; 9(12): e115454, 2014.
Article in English | MEDLINE | ID: mdl-25531410

ABSTRACT

The Androgen-binding protein (Abp) region of the mouse genome contains 30 Abpa genes encoding alpha subunits and 34 Abpbg genes encoding betagamma subunits, their products forming dimers composed of an alpha and a betagamma subunit. We endeavored to determine how many Abp genes are expressed as proteins in tears and saliva, and as transcripts in the exocrine glands producing them. Using standard PCR, we amplified Abp transcripts from cDNA libraries of C57BL/6 mice and found fifteen Abp gene transcripts in the lacrimal gland and five in the submandibular gland. Proteomic analyses identified proteins corresponding to eleven of the lacrimal gland transcripts, all of them different from the three salivary ABPs reported previously. Our qPCR results showed that five of the six transcripts that lacked corresponding proteins are expressed at very low levels compared to those transcripts with proteins. We found 1) no overlap in the repertoires of expressed Abp paralogs in lacrimal gland/tears and salivary glands/saliva; 2) substantial sex-limited expression of lacrimal gland/tear expressed-paralogs in males but no sex-limited expression in females; and 3) that the lacrimal gland/tear expressed-paralogs are found exclusively in ancestral clades 1, 2 and 3 of the five clades described previously while the salivary glands/saliva expressed-paralogs are found only in clade 5. The number of instances of extremely low levels of transcription without corresponding protein production in paralogs specific to tears and saliva suggested the role of subfunctionalization, a derived condition wherein genes that may have been expressed highly in both glands ancestrally were down-regulated subsequent to duplication. Thus, evidence for subfunctionalization can be seen in our data and we argue that the partitioning of paralog expression between lacrimal and salivary glands that we report here occurred as the result of adaptive evolution.


Subject(s)
Androgen-Binding Protein/genetics , Androgen-Binding Protein/metabolism , Genome , Lacrimal Apparatus/metabolism , Saliva/metabolism , Submandibular Gland/metabolism , Tears/metabolism , Androgen-Binding Protein/classification , Animals , Blotting, Western , Cells, Cultured , Evolution, Molecular , Female , Gene Expression Profiling , Lacrimal Apparatus/cytology , Male , Mice , Mice, Inbred C57BL , Proteomics , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Saliva/cytology , Selection, Genetic , Submandibular Gland/cytology
6.
Proteomes ; 1(3): 275-289, 2013 Dec 01.
Article in English | MEDLINE | ID: mdl-24926433

ABSTRACT

The overall goal of our study was to compare the proteins found in the saliva proteomes of three mammals: human, mouse and rat. Our first objective was to compare two human proteomes with very different analysis depths. The 89 shared proteins in this comparison apparently represent a core of highly-expressed human salivary proteins. Of the proteins unique to each proteome, one-half to 2/3 lack signal peptides and probably are contaminants instead of less highly-represented salivary proteins. We recently published the first rodent saliva proteomes with salivas collected from the genome mouse (C57BL/6) and the genome rat (BN/SsNHsd/Mcwi). Our second objective was to compare the proteins in the human proteome with those we identified in the genome mouse and rat to determine those common to all three mammals as well as the specialized rodent subset. We also identified proteins unique to each of the three mammals because differences in the secreted protein constitutions can provide clues to differences in the evolutionary adaptation of the secretions in the three different mammals.

SELECTION OF CITATIONS
SEARCH DETAIL
...