Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 15(15): 5660-5673, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38638212

ABSTRACT

Exploratory synthesis has been the main generator of new inorganic materials for decades. However, our Edisonian and bias-prone processes of synthetic exploration alone are no longer sufficient in an age that demands rapid advances in materials development. In this work, we demonstrate an end-to-end attempt towards systematic, computer-aided discovery and laboratory synthesis of inorganic crystalline compounds as a modern alternative to purely exploratory synthesis. Our approach initializes materials discovery campaigns by autonomously mapping the synthetic feasibility of a chemical system using density functional theory with AI feedback. Following expert-driven down-selection of newly generated phases, we use solid-state synthesis and in situ characterization via hot-stage X-ray diffraction in order to realize new ternary oxide phases experimentally. We applied this strategy in six ternary transition-metal oxide chemistries previously considered well-explored, one of which culminated in the discovery of two novel phases of calcium ruthenates. Detailed characterization using room temperature X-ray powder diffraction, 4D-STEM and SQUID measurements identifies the structure and composition and confirms distinct properties, including distinct defect concentrations, of one of the new phases formed in our experimental campaigns. While the discovery of a new material guided by AI and DFT theory represents a milestone, our procedure and results also highlight a number of critical gaps in the process that can inform future efforts towards the improvement of AI-coupled methodologies.

2.
ACS Appl Mater Interfaces ; 12(41): 46254-46266, 2020 Oct 14.
Article in English | MEDLINE | ID: mdl-32965104

ABSTRACT

High-performance electromagnetic interference (EMI) shielding materials for a high-temperature harsh environment are highly required for electronics and aerospace applications. Here, a composite made of ultrahigh-temperature ceramic- and polymer-derived SiOC ceramic (PDC-SiOC) with high EMI shielding was reported for such applications. A total EMI shielding efficiency (SET) of 26.67 dB with a thickness of 0.6 mm at the Ka-band (26.5-40 GHz) was reported for ZrB2 fabricated by spark plasma sintering, which showed reflection-dominant shielding. A unique interface of t-ZrO2 was formed after the introduction of PDC-SiOC into ZrB2. This interface has better electrical conductivity than SiOC. The composites also displayed reflection-dominant shielding. Accordingly, the composite with a normalized ZrB2 fraction of 50% pyrolyzed at 1000 °C exhibited a significant SET of 72 dB (over 99.99999% shielded) with a thickness of 3 mm at the entire Ka-band. A maximum SET of 90.8 dB (over 99.9999999% shielded) was achieved with a thickness of 3 mm at around 39.7 GHz.

3.
ACS Appl Mater Interfaces ; 11(48): 45155-45160, 2019 Dec 04.
Article in English | MEDLINE | ID: mdl-31701737

ABSTRACT

Additive manufacturing has dramatically transformed the design and fabrication of advanced objects. Printed electronics-an additive thin-film processing technology-aims to realize low-cost, large-area electronics, and fabrication of devices with highly customized architectures. Recent advances in printing technology have led to several innovative applications; however, layer-on-layer deposition persists as a challenging issue. Here, the additive manufacturing of functional oxide devices by inkjet printing is presented. Two conditions appear critical for successful layer-on-layer printing: (i) preservation of stable surface properties and (ii) suppression of the material accumulation at the edges of a feature upon drying. The former condition was satisfied by introducing a surface modification layer of a polymer with nanotextured topography, and the latter was satisfied by designing the solvent composition of the ink. The developed process is highly efficient and enables conformal stacking of functional oxide layers according to the user-defined geometry, sequence arrangement, and layer thickness. To prove the effectiveness of this concept, we demonstrate an additive manufacture of all-oxide ferroelectric multilayer capacitors/transducers. Printed multilayer devices offer a significant increase in the capacitance density and the electromechanical voltage response in comparison to the single-layer devices. Further growth in the number of available functional oxide inks will enable arbitrary device architectures with novel functionalities.

4.
ChemSusChem ; 12(12): 2598-2604, 2019 Jun 21.
Article in English | MEDLINE | ID: mdl-30998836

ABSTRACT

ABO3-δ perovskites are ideal for high-temperature thermochemical air separation for oxygen production because their oxygen nonstoichiometry δ can be varied in response to changes in temperature and oxygen partial pressure [ p O 2 ]. Herein, the outstanding oxygen-sorption performance of CaCox Zr1-x O3-δ perovskites and their potential application as oxygen-selective sorbents for air separation is reported. In situ thermal X-ray diffraction was used to study the materials' structural changes in response to temperature variations in air and inert atmosphere. Temperature-programmed reduction was employed to elucidate the relationship between perovskite composition and redox property. O2 sorption performance was evaluated by isothermal analyses at various temperature and p O 2 along with long-term absorption-desorption cycle tests. The high oxygen-sorption capacity was mainly attributed to Co at B-site, whereas partial substitution of Co by Zr enhanced the structural crystallinity and thermal stability of the perovskite. A stable oxygen production of 2.87 wt % was observed at 900 °C during 5 min-sorption cycles for 100 cycles.

5.
RSC Adv ; 9(41): 23459-23464, 2019 Jul 29.
Article in English | MEDLINE | ID: mdl-35530628

ABSTRACT

In this work, we explored the possibility of using Cs2AgBiBr6, a double perovskite crystal, for radiation detection. Cs2AgBiBr6 crystals were grown using the solution growth technique. The resistivity of the as-grown Cs2AgBiBr6 crystal is larger than 1010 Ω cm, which is high enough to ensure low leakage current for fabrication of semiconductor radiation detectors. Using the temperature-dependent resistivity measurements, we estimated that the Fermi level is at 0.788 eV above the valence band and the material is a p-type semiconductor. From the low-temperature cathodoluminescence measurements, two near band gap energies at 1.917 eV and 2.054 eV were revealed.

6.
Inorg Chem ; 57(5): 2752-2765, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29446630

ABSTRACT

Recently simulation groups have reported the lanthanide series elements as the dopants that have the strongest effect on the stabilization of the ferroelectric non-centrosymmetric orthorhombic phase in hafnium oxide. This finding confirms experimental results for lanthanum and gadolinium showing the highest remanent polarization values of all hafnia-based ferroelectric films until now. However, no comprehensive overview that links structural properties to the electrical performance of the films in detail is available for lanthanide-doped hafnia. La:HfO2 appears to be a material with a broad window of process parameters, and accordingly, by optimization of the La content in the layer, it is possible to improve the performance of the material significantly. Variations of the La concentration leads to changes in the crystallographic structure in the bulk of the films and at the interfaces to the electrode materials, which impacts the spontaneous polarization, internal bias fields, and with this the field cycling behavior of the capacitor structure. Characterization results are compared to other dopants like Si, Al, and Gd to validate the advantages of the material in applications such as semiconductor memory devices.

7.
Langmuir ; 33(37): 9314-9323, 2017 09 19.
Article in English | MEDLINE | ID: mdl-28732164

ABSTRACT

The reversible intercalation of multivalent cations, especially Mg2+, into a solid-state electrode is an attractive mechanism for next-generation energy storage devices. These reactions typically exhibit poor kinetics due to a high activation energy for interfacial charge-transfer and slow solid-state diffusion. Interlayer water in V2O5 and MnO2 has been shown to improve Mg2+ intercalation kinetics in nonaqueous electrolytes. Here, the effect of structural water on Mg2+ intercalation in nonaqueous electrolytes is examined in crystalline WO3 and the related hydrated and layered WO3·nH2O (n = 1, 2). Using thin film electrodes, cyclic voltammetry, Raman spectroscopy, X-ray diffraction, and electron microscopy, the energy storage in these materials is determined to involve reversible Mg2+ intercalation. It is found that the anhydrous WO3 can intercalate up to ∼0.3 Mg2+ (75 mAh g-1) and can maintain the monoclinic structure for at least 50 cycles at a cyclic voltammetry sweep rate of 0.1 mV s-1. The kinetics of Mg2+ storage in WO3 are limited by solid-state diffusion, which is similar to its behavior in a Li+ electrolyte. On the other hand, the maximum capacity for Mg2+ storage in WO3·nH2O is approximately half that of WO3 (35 mAh g-1). However, the kinetics of both Mg2+ and Li+ storage in WO3·nH2O are primarily limited by the interface and are thus pseudocapacitive. The stability of the structural water in WO3·nH2O varies: the interlayer water of WO3·2H2O is removed upon exposure to a nonaqueous electrolyte, while the water directly coordinated to W is stable during electrochemical cycling. These results demonstrate that tungsten oxides are potential candidates for Mg2+ cathodes, that in these materials structural water can lead to improved Mg2+ kinetics at the expense of capacity, and that the type of structural water affects stability.

8.
Int J Biol Macromol ; 92: 1197-1204, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27502421

ABSTRACT

Cellulose/collagen biofibers were produced from ethylene diamine/potassium thiocyanate binary solvent system, with methanol as a coagulant. The dynamic viscosity of the solutions decreased with the gradual increase in the collagen content up to 40%. The elemental analysis showed incorporation of collagen into cellulose matrix, thereby demonstrating some degree of interaction with the cellulose matrix. The chemical and thermal analysis further revealed an intermolecular interaction between cellulose and the protein and improved thermal stability, respectively. Furthermore, the electron microscopy images mostly exhibited fibrillar morphology with no visible phase separation, indicating compatibility between the two phases. Moreover, biofibers containing higher cellulose content showed higher crystallinity, tensile, and birefringence properties of the composite fibers.


Subject(s)
Cellulose/chemistry , Collagen/chemistry , Ethylenediamines/chemistry , Methanol/chemistry , Solutions , Solvents/chemistry , Tensile Strength , Thiocyanates/chemistry , Viscosity
9.
Biomacromolecules ; 17(1): 271-9, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26629913

ABSTRACT

Multifunctional scaffolds comprising neat poly(ε-caprolactone) (PCL) and α-cyclodextrin pseudorotaxanated in α-cyclodextrin form have been fabricated using a conventional electrospinning process. Thorough in-depth characterizations were performed on the pseudorotaxane nanofibers prepared from chloroform (CFM) and CFM/dimethylformamide (DMF) utilizing scanning electron microscopy (SEM), transmission electron microscopy (TEM), rheology, differential scanning calorimetry (DSC), thermogravimetric analyses (TGA), wide-angle X-ray diffraction (WAXD), and Instron tensile testing. The results indicate the nanofibers obtained from chloroform retain the rotaxanated structure; while those obtained from CFM/DMF had significantly dethreaded during electrospinning. As a consequence, the nanowebs obtained from CFM showed higher moduli and lower elongations at break compared to neat PCL nanowebs and PCL/α-CD nanowebs electrospun from CFM/DMF.


Subject(s)
Biocompatible Materials/chemical synthesis , Nanofibers/chemistry , Polyesters/chemical synthesis , Rotaxanes/chemical synthesis , Tissue Engineering/methods , Tissue Scaffolds/chemistry , alpha-Cyclodextrins/chemical synthesis , Biocompatible Materials/chemistry , Calorimetry, Differential Scanning , Microscopy, Electron, Scanning , Polyesters/chemistry , Rotaxanes/chemistry , X-Ray Diffraction , alpha-Cyclodextrins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...