Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 12: 748273, 2021.
Article in English | MEDLINE | ID: mdl-34819939

ABSTRACT

Global sea-level rise, the effect of climate change, poses a serious threat to rice production owing to saltwater intrusion and the accompanying increase in salt concentration. The reclaimed lands, comprising 22.1% of rice production in Korea, now face the crisis of global sea-level rise and a continuous increase in salt concentration. Here, we investigated the relationship between the decrease in seed quality and the transcriptional changes that occur in the developing rice seeds under salt stress. Compared to cultivation on normal land, the japonica rice cultivar, Samgwang, grown on reclaimed land showed a greatly increased accumulation of minerals, including sodium, magnesium, potassium, and sulfur, in seeds and a reduced yield, delayed heading, decreased thousand grain weight, and decreased palatability and amylose content. Samgwang showed phenotypical sensitivity to salt stress in the developing seeds. Using RNA-seq technology, we therefore carried out a comparative transcriptome analysis of the developing seeds grown on reclaimed and normal lands. In the biological process category, gene ontology enrichment analysis revealed that the upregulated genes were closely associated with the metabolism of biomolecules, including amino acids, carboxylic acid, lignin, trehalose, polysaccharide, and chitin, and to stress responses. MapMan analysis revealed the involvement of upregulated genes in the biosynthetic pathways of abscisic acid and melatonin and the relationship of trehalose, raffinose, and maltose with osmotic stress. Interestingly, many seed storage protein genes encoding glutelins and prolamins were upregulated in the developing seeds under salt stress, indicating the negative effect of the increase of storage proteins on palatability. Transcription factors upregulated in the developing seeds under salt stress included, in particular, bHLH, MYB, zinc finger, and heat shock factor, which could act as potential targets for the manipulation of seed quality under salt stress. Our study aims to develop a useful reference for elucidating the relationship between seed response mechanisms and decreased seed quality under salt stress, providing potential strategies for the improvement of seed quality under salt stress.

2.
Rice (N Y) ; 9(1): 62, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27882529

ABSTRACT

BACKGROUND: Improved eating quality is a major breeding target in japonica rice due to market demand. Consequently, quantitative trait loci (QTL) for glossiness of cooked rice and amylose content associated with eating quality have received much research focus because of their importance in rice quality. RESULTS: In this study, QTL associated with 12 grain quality traits were identified using 96 introgression lines (IL) of rice developed from an interspecific cross between the Korean elite O. sativa japonica cultivar 'Hwaseong' and O. rufipogon over 7 years. QTL analyses indicated that QTL qDTH6 for heading date, detected on chromosome 6 is associated with variance in grain traits. Most QTLs detected in this study clustered near the qDTH6 locus on chromosome 6, suggesting the effect of qDTH6. O. rufipogon alleles negatively affected grain quality traits except for a few QTLs, including qGCR9 for glossiness of cooked rice on chromosome 9. To characterize the effect of the O. rufipogon locus harboring qGCR9, four lines with a single but different O. rufipogon segment near qGCR9 were compared to Hwaseong. Three lines (O. rufipopgon ILs) having O. rufipogon segment between RM242 and RM245 in common showed higher glossiness of cooked rice than Hwaseong and the other line (Hwaseong IL), indicating that qGCR9 is located in the 3.4-Mb region between RM242 and RM245. Higher glossiness of cooked rice conferred by the O. rufipogon allele might be associated with protein content considering that three lines had lower protein content than Hwaseong (P < 0.1). These three O. rufipogon ILs showed higher yield than Hwaseong and Hwaseong IL due to increase in spikelets per panicle and grain weight indicating the linkage of qGCR9 and yield component QTLs. CONCLUSION: The qGCR9 locus is of particular interest because of its independence from other undesirable grain quality traits in O. rufipogon. SSR markers linked to qGCR9 can be used to develop high-quality japonica lines and offer a starting point for map-based cloning of genes underlying this trait. To our knowledge, this is the first report to map a beneficial QTL for glossiness of cooked rice from a wild rice, O. rufipogon.

3.
Rice (N Y) ; 7(1): 14, 2014 Dec.
Article in English | MEDLINE | ID: mdl-26055996

ABSTRACT

BACKGROUND: High grain yield is one of the most important traits requiring improvement in rice breeding programs. Consequently, the genetic basis of spikelets per panicle (SPP) and grain weight (TGW) have received much research focus because of their importance in rice yield. RESULTS: In this study, IL28, which is a near isogenic line (NIL) developed by introgressing chromosomal segments of the cultivar 'Moroberekan' into the cultivar 'Ilpumbyeo', showed a significant increase in the number of spikelets per panicle (SPP) and 1,000-grain weight (TGW) compared to the recurrent parent, Ilpumbyeo. Quantitative trait locus (QTL) analysis in 243 F2 plants derived from a cross between IL28 and Ilpumbyeo indicated that both qSPP6 and qTGW6 are located in the interval RM3430-RM20580. Following substitution mapping with 50 F3:4:5 lines, qSPP6 was mapped to a 429-kb interval between RM20521 and InDel-1, while qTGW6 was mapped to a 37.85-kb interval between InDel-1 and SNP--3 based on the japonica genome sequence. This result indicates that qSPP6 and qTGW6 are different genes. Yield trials with substitution lines indicated that lines harboring the homozygous Moroberekan segment at both the qSPP6 and qTGW6 region showed significantly higher grain yield than Ilpumbyeo. CONCLUSION: Because the Moroberekan alleles for SPP and TGW have been shown to be beneficial in the genetic background of Ilpumbyeo, both the qSPP6 and qTGW6 alleles might prove valuable in improving rice yields. Closely linked SSR markers are expected to facilitate the cloning of genes that underlie these QTLs, as well as with marker-assisted selection for variation in SPP and TGW in rice breeding programs.

SELECTION OF CITATIONS
SEARCH DETAIL
...