Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(10): 107788, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-37817940

ABSTRACT

Metasurface-based color splitters are emerging as next-generation optical components for image sensors, replacing classical color filters and microlens arrays. In this work, we report how the design parameters such as the device dimensions and refractive indices of the dielectrics affect the optical efficiency of the color splitters. Also, we report how the design grid resolution parameters affect the optical efficiency and discover that the fabrication of a color splitter is possible even in legacy fabrication facilities with low structure resolutions.

2.
Opt Express ; 30(6): 9008-9020, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35299340

ABSTRACT

We demonstrate directional light emission in nano-LEDs using inverse design. Standard light-extraction strategies in LEDs have been limited to surface roughening or suppressing guided modes via LED structure modifications, which are insufficient for simultaneously achieving high-light extraction efficiency and directional emission. In this work, we use inverse design to discover high-efficiency directional emitting nano-LEDs. We first investigate the computational upper bounds of directional emission using free-form grayscale material, where material permittivity indicates an intermediate state between air and SiO2. For a narrow emission angle (<±30°), the optimized grayscale design offers 4.99 times enhancement from the planar LED surface. Then, we apply fabrication constraints to our inverse design for discovering a single material (SiO2) based design. The optimized SiO2 surface design shows 4.71 times light extraction (<±30°) improvement compared with the planar configuration. This is a first theoretical demonstration of high light-extraction efficiency and directional emitting nano-LED designs.

3.
Opt Express ; 29(7): 10780-10799, 2021 Mar 29.
Article in English | MEDLINE | ID: mdl-33820205

ABSTRACT

Vertically interrogated porous silicon (PSi) interferometric biosensors have shown high potential for sensing bio-molecules as they combine high detection sensitivity with simplicity of fabrication, functionalization, optical coupling, and interfacing with microfluidic systems. However, most interferometric sensor designs require either broadband or wavelength-tunable light sources as well as wide-angle detection schemes, increasing their complexity and cost for point-of-care biosensing applications. The limit of detection of such sensors is also constrained by the small size and low refractive index of biological molecules, making it hard to detect very low concentrations of pathogens. In this work, we use a large-scale computational "inverse design" technique to demonstrate a single-frequency, fixed-angle PSi-based biosensor, which exploits a recently developed high-contrast reporter cleavage detection (HCCD) technique. The HCCD sensors detect high-index reporter cleavage events instead of low-index target analyte capture events as typical for traditional label-free optical biosensors. We use the inverse design approach to discover an optimal configuration of a PSi biosensor that makes use of the extended achievable range of cleavage-induced PSi effective index variations and can be interrogated at a single frequency and at a fixed angle. The optimized design in the form of a one-dimensional PSi grating exhibits the change in the reflectance up to 55 % at the interrogation angle of 12∘ and wavelength of 600 nm, which is caused by cleavage of Au nanoparticle reporters initially occupying 2% of the sensor surface area. The maximum possible change in reflectance is predicted to be 222 % (for a two-dimensional freeform design not amenable to fabrication). This demonstration may pave the way for developing new or redesigned conventional interferometric and colorimetric point-of-care biosensor systems in combination with the cleavage-based detection schemes.


Subject(s)
Biosensing Techniques/instrumentation , Metal Nanoparticles/chemistry , Silicon/chemistry , Equipment Design , Interferometry/methods , Lab-On-A-Chip Devices
4.
Opt Express ; 29(1): 1-11, 2021 Jan 04.
Article in English | MEDLINE | ID: mdl-33362092

ABSTRACT

Using porous silicon (PSi) interferometer sensors, we show the first experimental implementation of the high contrast cleavage detection (HCCD) mechanism. HCCD makes use of dramatic optical signal amplification caused by cleavage of high-contrast nanoparticle labeled reporters instead of the capture of low-index biological molecules. An approximately 2 nm reflectance peak shift was detected after cleavage of DNA-quantum dot reporters from the PSi surface via exposure to a 12.5 nM DNase enzyme solution. This signal change is 20 times greater than the resolution of the spectrometer used for the interferometric measurements, and the interferometric measurements agree with the response predicted by simulations and fluorescence measurements. These proof of principle experiments show a clear path to achieving a real-time, highly sensitive readout for a broad range of biological diagnostic assays that generate a signal via nucleic acid cleavage triggered by specific molecular binding events.

5.
Opt Express ; 28(5): 6945-6965, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225932

ABSTRACT

We use inverse design to discover metalens structures that exhibit broadband, achromatic focusing across low, moderate, and high numerical apertures. We show that standard unit-cell approaches cannot achieve high-efficiency high-NA focusing, even at a single frequency, due to the incompleteness of the unit-cell basis, and we provide computational upper bounds on their maximum efficiencies. At low NA, our devices exhibit the highest theoretical efficiencies to date. At high NA-of 0.9 with translation-invariant films and of 0.99 with "freeform" structures-our designs are the first to exhibit achromatic high-NA focusing.

6.
ACS Appl Mater Interfaces ; 10(31): 26084-26098, 2018 Aug 08.
Article in English | MEDLINE | ID: mdl-30011366

ABSTRACT

Poly(propylene carbonate) (PPC) decomposes at high temperature to release CO2. This CO2-generation temperature of PPC can be reduced down to less than 80 °C with the aid of a photoacid generator (PAG). In the present work, we demonstrate that using an additional helper component, surface plasmonic gold nanorods (GNRs), the PPC degradation reaction can also be initiated by infrared (IR) irradiation. For this purpose, a PPC-containing nanoparticle formulation was developed in which PPC-based amphiphilic block copolymers (BCPs), poly(poly(ethylene glycol) methacrylate- b-propylene carbonate- b-poly(ethylene glycol) methacrylate) (PPEGMA-PPC-PPEGMA), were self-assembled with GNRs and PAG molecules via solvent exchange. Under IR irradiation, GNRs produce heat that can cause PPC to decompose into CO2, and PAG (after UV pretreatment) catalyzes this PPC degradation process. Two PPEGMA-PPC-PPEGMA materials were used for this study: PPEGMA7.3K-PPC5.6K-PPEGMA7.3K ("G7C6G7") and PPEGMA2.1K-PPC5.6K-PPEGMA2.1K ("G2C6G2"). Addition of CTAB-coated GNRs dispersed in water to a G2C6G2 solution in DMF produced individually G2C6G2-encapsulated GNRs, whereas the same solvent exchange procedure resulted in the formation of polymer-coated GNR clusters when G7C6G7 was used as the encapsulating material. GNR/G2C6G2 NPs exhibited a surface plasmon resonance peak at 697 nm. The clustered morphology of G7C6G7-encapsulated GNRs caused a blue shift of the absorbance maximum to 511 nm. As a consequence, GNR/G2C6G2 NPs showed a greater absorbance/heat generation rate under IR irradiation than did GNR/G7C6G7 NPs. The IR-induced CO2 generation rate was about 4.2 times higher with the GNR/G2C6G2+PAG sample than that with the GNR/G7C6G7+PAG sample. Both GNR/G7C6G7+PAG and GNR/G2C6G2+PAG systems produced ultrasound contrast enhancement effects under continuous exposure to IR light for >20 min; contrast enhancement was more spatially uniform for the GNR/G2C6G2+PAG sample. These results support the potential utility of PPC as a CO2-generating contrast agent in ultrasound imaging applications.

7.
Opt Express ; 25(8): A311-A322, 2017 Apr 17.
Article in English | MEDLINE | ID: mdl-28437918

ABSTRACT

A key challenge in photovoltaics today is to develop cell technologies with both higher efficiencies and lower fabrication costs than incumbent crystalline silicon (c-Si) single-junction cells. While tandem cells have higher efficiencies than c-Si alone, it is generally challenging to find a low-cost, high-performance material to pair with c-Si. However, the recent emergence of 22% efficient perovskite photovoltaics has created a tremendous opportunity for high-performance, low-cost perovskite / crystalline silicon tandem photovoltaic cells. Nonetheless, two key challenges remain. First, integrating perovskites into tandem structures has not yet been demonstrated to yield performance exceeding commercially available crystalline silicon modules. Second, the stability of perovskites is inconsistent with the needs of most end-users, who install photovoltaic modules to produce power for 25 years or more. Making these cells viable thus requires innovation in materials processing, device design, fabrication, and yield. We will address these two gaps in the photovoltaic literature by investigating new types of 2D perovskite materials with n-butylammonium spacer layers, and integrating these materials into bifacial tandem solar cells providing at least 30% normalized power production. We find that an optimized 2D perovskite ((BA)2(MA)3(Sn0.6Pb0.4)4I13)/silicon bifacial tandem cell, given a globally average albedo of 30%, yields a normalized power production of 30.31%, which should be stable for extended time periods without further change in materials or encapsulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...