Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 102: 129645, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38316368

ABSTRACT

Lymphocyte-specific protein tyrosine kinase (Lck) plays vital roles in the T-cell receptor- mediated development, function, and differentiation of T-cells. Given its substantial involvement in T cell signaling, irregularities in the expression and functionality of Lck may lead to various diseases, including cancer. In this study, we found that compound 12a exerted significant inhibitory potency against Lck with an IC50 value of 10.6 nM. In addition, 12a demonstrated high efficacy in various colon cancer cell lines as indicated by GI50 values ranging from 0.24 to 1.26 µM. Notably, 12a inhibited the phosphorylation of Lck in Colo201 cells. Overall, the anti-proliferative effects of 12a on diverse cancer cell lines highlights its potential application for the treatment of various cancer types.


Subject(s)
Antineoplastic Agents , Lymphocyte Specific Protein Tyrosine Kinase p56(lck) , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/metabolism , Lymphocyte Specific Protein Tyrosine Kinase p56(lck)/pharmacology , T-Lymphocytes , Signal Transduction , Phosphorylation , Receptors, Antigen, T-Cell/metabolism , Antineoplastic Agents/pharmacology
2.
Eur J Med Chem ; 264: 116014, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38061230

ABSTRACT

CDK12 is overexpressed in HER2-positive breast cancers and promotes tumorigenesis and trastuzumab resistance. Thus CDK12 is a good therapeutic target for the HER2-positive breast tumors resistant to trastuzumab. We previously reported a novel purine-based CDK inhibitor with an ability to degrade cyclinK. Herein, we further explored and synthesized new derivatives, and identified a new potent pan-CDK inhibitor degrading cyclinK (32e). Compound 32e potently inhibited CDK12/cyclinK with IC50 = 3 nM, and suppressed the growth of the both trastuzumab-sensitive and trastuzumab-resistant HER2-positive breast cancer cell lines (GI50's = 9-21 nM), which is superior to a potent, clinical pan-CDK inhibitor dinaciclib. Moreover, 32e (10, 20 mg/kg, ip, twice a week) showed a dose-dependent inhibition of tumor growth and a more dramatic anti-cancer effect than dinaciclib in mouse in vivo orthotopic breast cancer model of trastuzumab-resistant HCC1954 cells. Kinome-wide inhibition profiling revealed that 32e at 1 µM exhibits a decent selectivity toward CDK-family kinases including CDK12 over other wildtype protein kinases. Quantitative global proteomic analysis of 32e-treated HCC1954 cells demonstrated that 32e also showed a decent selectivity in degrading cyclinK over other cyclins. Compound 32e could be developed as a drug for intractable trastuzumab-resistant HER2-positive breast cancers. Our current study would provide a useful insight in designing potent cyclinK degraders.


Subject(s)
Neoplasms , Proteomics , Animals , Mice , Trastuzumab/pharmacology , Trastuzumab/therapeutic use , Receptor, ErbB-2/metabolism , Cell Line, Tumor , Drug Resistance, Neoplasm , Protein Kinase Inhibitors/pharmacology , Neoplasms/drug therapy
3.
Chem Biol Drug Des ; 102(3): 500-513, 2023 09.
Article in English | MEDLINE | ID: mdl-37072259

ABSTRACT

NSD3/WHSC1L1 lysine methyltransferase promotes the transcription of target genes through di- or tri-methylation at histone H3K36 using SAM as a cofactor. Genetic alterations such as amplification and gain-of-function mutation of NSD3 act as oncogenic drivers in several cancers including squamous cell lung cancer and breast cancer. NSD3 is an important therapeutic target for cancers, but the reported NSD3 inhibitors targeting the catalytic SET domain are very rare and show a poor activity. Herein, from a virtual library screening and the subsequent medicinal chemistry optimization, we identified a novel class of NSD3 inhibitors. Our docking analysis and pulldown result suggested that the most potent analogue 13i shows a unique, bivalent binding mode interacting with both SAM-binding site and BT3-bindig site within the SET domain. We found 13i inhibits NSD3 activity with IC50 = 287 µM in vitro and suppresses the proliferation of JIMT1 breast cancer cells with GI50 = 36.5 µM, which express a high level of NSD3. Also, 13i downregulated the levels of H3K36me2/3 in a dose-dependent manner. Our study could provide an insight in designing high-affinity NSD3 inhibitors. Also, as the acrylamide group of 13i was predicted to position near Cys1265 in the BT3-binding site, further optimization would lead to a discovery of novel irreversible NSD3 inhibitors.


Subject(s)
Breast Neoplasms , PR-SET Domains , Humans , Female , Histones , Protein Domains , Methylation , Breast Neoplasms/drug therapy
4.
J Enzyme Inhib Med Chem ; 37(1): 2434-2451, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36069240

ABSTRACT

In an effort to discover novel scaffolds of non-nucleotide-derived Ectonucleotide pyrophosphatase/phosphodiesterase 1 (ENPP1) inhibitors to stimulate the Stimulator of Interferon Genes (STING) pathway, we designed and synthesised pyrrolopyrimidine and pyrrolopyridine derivatives and performed structure-activity relationship (SAR) study. We found 18p possessed high potency (IC50 = 25.0 nM) against ENPP1, and activated STING pathway in a concentration dependent manner. Also, in response to STING pathway activation, cytokines such as IFN-ß and IP-10 were induced by 18p in a concentration dependent manner. Finally, we discovered that 18p causes inhibition of tumour growth in 4T1 syngeneic mouse model. This study provides new insight into the designing of novel ENPP1 inhibitors and warrants further development of small molecule immune modulators for cancer immunotherapy.


Subject(s)
Phosphoric Diester Hydrolases , Pyrophosphatases , Animals , Mice , Phosphoric Diester Hydrolases/metabolism , Pyrimidines , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , Pyrroles/pharmacology , Structure-Activity Relationship
5.
Pharmaceuticals (Basel) ; 15(9)2022 Aug 23.
Article in English | MEDLINE | ID: mdl-36145262

ABSTRACT

HER2-positive (HER2+) breast cancer is defined by HER2 oncogene amplification on chromosome 17q12 and accounts for 15−20% population of breast-cancer patients. Therapeutic anti-HER2 antibody such as trastuzumab is used as the first-line therapy for HER2-positive breast cancers. However, more than 50% of the patients respond poorly to trastuzumab, illustrating that novel therapy is warranted to overcome the resistance. We previously reported that in the majority of HER2+ breast-cancer patients, CDK12 is co-amplified on 17q12 and involved in developing tumors and trastuzumab resistance, proposing CDK12 as a potential drug target for HER2+ breast cancers. Here, we designed and synthesized novel 2,6,9-trisubstituted purines as potent CDK12 inhibitors showing strong, equipotent antiproliferative activity against trastuzumab-sensitive HER2+ SK-Br3 cells and trastuzumab-resistant HER2+ HCC1954 cells (GI50 values < 50 nM) both of which express a high level of CDK12. Two potent analogue 30d and 30e at 40, 200 nM greatly downregulated the levels of cyclinK and Pol II p-CTD (Ser2), as well as the expression of CDK12 downstream genes (IRS1 and WNT1) in a dose-dependent manner. We also observed structure-property relationship for a subset of potent analogues, and found that 30e is highly stable in liver microsomes with lack of CYP inhibition. In addition, 30d exhibited a synergy with trastuzumab in the both cells, suggesting that our inhibitors could be applied to alleviate trastuzumab-resistance of HER2+ breast cancers and escalate the efficacy of trastuzumab as well. Our study may provide insight into developing a novel therapy for HER2+ breast cancers.

6.
J Comput Aided Mol Des ; 31(7): 653-666, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28623486

ABSTRACT

Protein-ligand docking is a useful tool for providing atomic-level understanding of protein functions in nature and design principles for artificial ligands or proteins with desired properties. The ability to identify the true binding pose of a ligand to a target protein among numerous possible candidate poses is an essential requirement for successful protein-ligand docking. Many previously developed docking scoring functions were trained to reproduce experimental binding affinities and were also used for scoring binding poses. However, in this study, we developed a new docking scoring function, called GalaxyDock BP2 Score, by directly training the scoring power of binding poses. This function is a hybrid of physics-based, empirical, and knowledge-based score terms that are balanced to strengthen the advantages of each component. The performance of the new scoring function exhibits significant improvement over existing scoring functions in decoy pose discrimination tests. In addition, when the score is used with the GalaxyDock2 protein-ligand docking program, it outperformed other state-of-the-art docking programs in docking tests on the Astex diverse set, the Cross2009 benchmark set, and the Astex non-native set. GalaxyDock BP2 Score and GalaxyDock2 with this score are freely available at http://galaxy.seoklab.org/softwares/galaxydock.html .


Subject(s)
Molecular Docking Simulation , Proteins/chemistry , Binding Sites , Databases, Protein , Ligands , Protein Binding , Protein Conformation , Research Design , Software
7.
J Comput Aided Mol Des ; 24(5): 385-97, 2010 May.
Article in English | MEDLINE | ID: mdl-20358258

ABSTRACT

Three dimensional (3D) quantitative structure-activity relationship studies of 37 B-Raf inhibitors, pyrazole-based derivatives, were performed. Based on the co-crystallized compound (PDB ID: 3D4Q), several alignment methods were utilized to derive reliable comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. Receptor-guided alignment with quantum mechanics/molecular mechanics (QM/MM) minimization led to the best CoMFA model (q (2) = 0.624, r (2) = 0.959). With the same alignment, a statistically reliable CoMSIA model with steric, H-bond acceptor, and hydrophobic fields was also derived (q (2) = 0.590, r (2) = 0.922). Both models were validated with an external test set, which gave satisfactory predictive r (2) values of 0.926 and 0.878, respectively. Contour maps from CoMFA and CoMSIA models revealed important structural features responsible for increasing biological activity within the active site and explained the correlation between biological activity and receptor-ligand interactions. New fragments were identified as building blocks which can replace R1-3 groups through combinatorial screening methods. By combining these fragments a compound with a high bioactivity level prediction was found. These results can offer useful information for the design of new B-Raf inhibitors.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Quantitative Structure-Activity Relationship , Binding Sites , Computer-Aided Design , Crystallography, X-Ray , Humans , Least-Squares Analysis , Ligands , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Protein Conformation , Proto-Oncogene Proteins B-raf/chemistry , Quantum Theory , Static Electricity
8.
J Microbiol ; 48(1): 111-6, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20221738

ABSTRACT

Traditionally primers for PCR detection of viruses have been selected from genomic sequence of single or representative viral strain. However, high mutation rate of viral genomes often results in failure in detecting viruses in clinical and environmental samples. Thus, it seems necessary to consider primers designed from multiple viral sequences in order to improve detection of viral variants. Matchup is a program intended to select universal primers from multiple sequences. We designed using Matchup program primer pairs for HBV detection from 691 full genomic HBV DNA sequences available from NCBI GenBank database. Thousands of primer candidates were initially extracted and these were sequentially filtered down to 5 primer pairs. These primer pairs were tested by PCR using 5 HBV Korean HBsAg(+) patient sera, and eventually one universal primer pair was selected and named MUW (multiple-universal-worldwide). This primer pair, 3 HBV reference primer pairs reported by others and 1 commercial primer pair were compared using 86 HBV HBsAg(+) sera from Korean and Vietnamese patients. The detection rate for MUW primer pair was 72.1%, much greater than those obtained by reference and commercial primers (32.5 to 40.7%). The superiority of MUW primer pair appeared to be correlated with the conserved sequences of the forward primer binding sites and primer quality score. These results suggest that the universal primers designed by the Matchup program from multiple sequences could be useful in detecting viruses from clinical samples.


Subject(s)
DNA Primers/genetics , DNA, Viral/genetics , Hepatitis B virus/genetics , Hepatitis B virus/isolation & purification , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , Base Sequence , DNA, Viral/blood , Databases, Genetic , Genetic Variation , Humans , Molecular Sequence Data , Mutation , Viral Load
9.
J Mol Model ; 14(4): 293-302, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18256861

ABSTRACT

Amino azobenzenes are important dyes in the food and textile industry but their application is limited due to their mutagenicity. Computational modeling techniques were used to help understand the factors responsible for mutagenicity, and several quantitative structure toxicity relationship (QSTR) models have been derived. HQSTR (hologram QSTR) analyses indicated that different substituents at sites on both rings contribute to mutagenicity. Fragment parameters such as bond (B) and connectivity(C), as well as donor-acceptor (DA)-based model provide significant results (q(2) = 0.59, r(2) = 0.92, r(2)predictive = 0.63) explaining these harmful effect. HQSTR results indicated that a bulky group at ring "Y" and small group at ring "X" might help to decrease mutagenicity. 3D-QSTR based on comparative molecular field analyses (CoMFA) and comparative molecular similarity index analyses (CoMSIA) are also in agreement with HQSTR. The 3D QSTR studies reveal that steric and electrostatic field effects have a strong relationship with mutagenicity (for CoMFA: q(2) = 0.51, r(2 )= 0.95, r(2) predictive = 0.65 and for CoMSIA: q(2) = 0.51, r(2) = 0.93 and r(2) predictive = 0.84). In summary, negative groups and steric bulk at ring "Y" and small groups at carbon-3 of ring "X" might be helpful in reducing the mutagenicity of azo dyes.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Food Coloring Agents/chemistry , Mutagens/chemistry , Azo Compounds/toxicity , Coloring Agents/toxicity , Food Coloring Agents/toxicity , Molecular Structure , Mutagens/toxicity , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...