Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Invest ; 134(11)2024 May 03.
Article in English | MEDLINE | ID: mdl-38702076

ABSTRACT

Sarcopenia burdens the older population through loss of muscle energy and mass, yet treatments to functionally rescue both parameters are lacking. The glucocorticoid prednisone remodels muscle metabolism on the basis of frequency of intake, but its mechanisms in sarcopenia are unknown. We found that once-weekly intermittent prednisone administration rescued muscle quality in aged 24-month-old mice to a level comparable to that seen in young 4-month-old mice. We discovered an age- and sex-independent glucocorticoid receptor transactivation program in muscle encompassing peroxisome proliferator-activated receptor γ coactivator 1 α (PGC1α) and its cofactor Lipin1. Treatment coordinately improved mitochondrial abundance through isoform 1 and muscle mass through isoform 4 of the myocyte-specific PGC1α, which was required for the treatment-driven increase in carbon shuttling from glucose oxidation to amino acid biogenesis. We also probed myocyte-specific Lipin1 as a nonredundant factor coaxing PGC1α upregulation to the stimulation of both oxidative and anabolic effects. Our study unveils an aging-resistant druggable program in myocytes for the coordinated rescue of energy and mass in sarcopenia.


Subject(s)
Aging , Glucocorticoids , Muscle, Skeletal , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha , Phosphatidate Phosphatase , Sarcopenia , Animals , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Sarcopenia/metabolism , Sarcopenia/drug therapy , Sarcopenia/pathology , Sarcopenia/genetics , Mice , Aging/metabolism , Phosphatidate Phosphatase/genetics , Phosphatidate Phosphatase/metabolism , Glucocorticoids/pharmacology , Muscle, Skeletal/metabolism , Muscle, Skeletal/drug effects , Male , Disease Models, Animal , Female
2.
bioRxiv ; 2024 Mar 31.
Article in English | MEDLINE | ID: mdl-38585940

ABSTRACT

Genetic variations in the glucocorticoid receptor (GR) gene NR3C1 can impact metabolism. The single nucleotide polymorphism (SNP) rs6190 (p.R23K) has been associated in humans with enhanced metabolic health, but the SNP mechanism of action remains completely unknown. We generated a transgenic knock-in mice genocopying this polymorphism to elucidate how the mutant GR impacts metabolism. Compared to non-mutant littermates, mutant mice showed increased muscle insulin sensitivity and strength on regular chow and high-fat diet, blunting the diet-induced adverse effects on weight gain and exercise intolerance. Overlay of RNA-seq and ChIP-seq profiling in skeletal muscle revealed increased transactivation of Foxc1 and Arid5A genes by the mutant GR. Using adeno-associated viruses for in vivo overexpression in muscle, we found that Foxc1 was sufficient to transcriptionally activate the insulin response pathway genes Insr and Irs1. In parallel, Arid5a was sufficient to transcriptionally repress the lipid uptake genes Cd36 and Fabp4, reducing muscle triacylglycerol accumulation. Collectively, our findings identify a muscle-autonomous epigenetic mechanism of action for the rs6190 SNP effect on metabolic homeostasis, while leveraging a human nuclear receptor coding variant to unveil Foxc1 and Arid5a as novel epigenetic regulators of muscle metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...