Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(9): e0258028, 2021.
Article in English | MEDLINE | ID: mdl-34591908

ABSTRACT

Lycoris species have various chromosome numbers and karyotypes, but all have a constant total number of chromosome major arms. In addition to three fundamental types, including metacentric (M-), telocentric (T-), and acrocentric (A-) chromosomes, chromosomes in various morphology and size were also observed in natural populations. Both fusion and fission translocation have been considered as main mechanisms leading to the diverse karyotypes among Lycoris species, which suggests the centromere organization playing a role in such arrangements. We detected several chromosomal structure changes in Lycoris including centric fusion, inversion, gene amplification, and segment deletion by using fluorescence in situ hybridization (FISH) probing with rDNAs. An antibody against centromere specific histone H3 (CENH3) of L. aurea (2n = 14, 8M+6T) was raised and used to obtain CENH3-associated DNA sequences of L. aurea by chromatin immunoprecipitation (ChIP) cloning method. Immunostaining with anti-CENH3 antibody could label the centromeres of M-, T-, and A-type chromosomes. Immunostaining also revealed two centromeres on one T-type chromosome and a centromere on individual mini-chromosome. Among 10,000 ChIP clones, 500 clones which showed abundant in L. aurea genome by dot-blotting analysis were FISH mapped on chromosomes to examine their cytological distribution. Five of these 500 clones could generate intense FISH signals at centromeric region on M-type but not T-type chromosomes. FISH signals of these five clones rarely appeared on A-type chromosomes. The five ChIP clones showed similarity in DNA sequences and could generate similar but not identical distribution patterns of FISH signals on individual chromosomes. Furthermore, the distinct distribution patterns of FISH signals on each chromosome generated by these five ChIP clones allow to identify individual chromosome, which is considered difficult by conventional staining approaches. Our results suggest a different organization of centromeres of the three chromosome types in Lycoris species.


Subject(s)
Centromere , Chromosomes, Plant , DNA, Ribosomal , Histones/genetics , Lycoris/genetics , Chromatin Immunoprecipitation , Gene Amplification , Gene Deletion , Histones/metabolism , In Situ Hybridization, Fluorescence , Karyotype , Lycoris/metabolism
2.
BMC Genomics ; 21(1): 807, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33213366

ABSTRACT

BACKGROUND: Transposable elements (TEs) are fragments of DNA that can insert into new chromosomal locations. They represent a great proportion of eukaryotic genomes. The identification and characterization of TEs facilitates understanding the transpositional activity of TEs with their effects on the orchid genome structure. RESULTS: We combined the draft whole-genome sequences of Phalaenopsis equestris with BAC end sequences, Roche 454, and Illumina/Solexa, and identified long terminal repeat (LTR) retrotransposons in these genome sequences by using LTRfinder and classified by using Gepard software. Among the 10 families Gypsy-like retrotransposons, three families Gypsy1, Gypsy2, and Gypsy3, contained the most copies among these predicted elements. In addition, six high-copy retrotransposons were identified according to their reads in the sequenced raw data. The 12-kb Orchid-rt1 contains 18,000 copies representing 220 Mbp of the P. equestris genome. Southern blot and slot blot assays showed that these four retrotransposons Gypsy1, Gypsy2, Gypsy3, and Orchid-rt1 contained high copies in the large-genome-size/large-chromosome species P. violacea and P. bellina. Both Orchid-rt1 and Gypsy1 displayed various ratios of copy number for the LTR sequences versus coding sequences among four Phalaenopsis species, including P. violacea and P. bellina and small-genome-size/small-chromosome P. equestris and P. ahprodite subsp. formosana, which suggests that Orchid-rt1 and Gypsy1 have been through various mutations and homologous recombination events. FISH results showed amplification of Orchid-rt1 in the euchromatin regions among the four Phalaenopsis species. The expression levels of Peq018599 encoding copper transporter 1 is highly upregulated with the insertion of Orchid-rt1, while it is down regulated for Peq009948 and Peq014239 encoding for a 26S proteasome non-ATP regulatory subunit 4 homolog and auxin-responsive factor AUX/IAA-related. In addition, insertion of Orchid-rt1 in these three genes are all in their intron regions. CONCLUSION: Orchid-rt1 and Gypsy1-3 have amplified within Phalaenopsis orchids concomitant with the expanded genome sizes, and Orchid-rt1 and Gypsy1 may have gone through various mutations and homologous recombination events. Insertion of Orchid-rt1 is in the introns and affects gene expression levels.


Subject(s)
Orchidaceae , Retroelements , DNA Copy Number Variations , Evolution, Molecular , Genome, Plant , Humans , Orchidaceae/genetics , Retroelements/genetics , Terminal Repeat Sequences/genetics
3.
Plant Biotechnol (Tokyo) ; 36(3): 181-185, 2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31768120

ABSTRACT

Hybrid Oncidium orchids, such as Oncidium Gower Ramsey and Oncidium "Honey Angel," are popular cut flowers in Japan and Taiwan. Due to pollen sterility, no new varieties have been created by conventional breeding methods. Recently, we employed RNA interference (RNAi) technology to suppress phytoene synthase and successfully modified floret hue from yellow to white (Liu et al. 2019). Transgenic white Oncidium orchids, Honey Snow MF-1, have been grown to test their genetic stability, and their environmental biosafety was assessed for approximately one year under government regulatory instructions from the Council of Agriculture, Taiwan. In the present study, pollen sterility was demonstrated by cytological observation of the microsporogenesis step, pollen morphology abortion, and failure of pollen germination. Assays on allelopathic effect on the other plants and the soil rhizospheric microbial flora-revealed that transgenic Oncidium orchids are potentially safe with regard to environmental biodiversity. Therefore, the general release permissions have been granted and an application for licensing for commercial production is under way.

4.
Front Plant Sci ; 10: 1709, 2019.
Article in English | MEDLINE | ID: mdl-32082333

ABSTRACT

Phalaenopsis orchids have a spectacular floral morphology with a highly evolved lip that offers a landing platform for pollinators. The typical morphological orchid lip features are essential for the special pollination mechanism of Phalaenopsis flowers. Previously, we found that in the lip, a member of the AP2/EREBP protein family was highly expressed. Here, we further confirmed its high expression and characterized its function during lip development. Phylogenetic analysis showed that AP2/EREBP belongs to the Va2 subgroup of ERF transcription factors. We named it PeERF1. We found that PeERF1 was only expressed at stage 5, as flowers opened. This coincided with both thickening of the cuticle and development of nanoridges. We performed knockdown expression of PeERF1 using CymMV-based virus-induced gene silencing in either the AP2 conserved domain, producing PeERF1_AP2-silenced plants, or the SHN specific domain, producing PeERF1_SHN-silenced plants. Using cryo-SEM, we found that the number of nanoridges was reduced only in the PeERF1_AP2-silenced group. This change was found on both the abaxial and adaxial surfaces of the central lip lobe. Expression of PeERF1 was reduced significantly in PeERF1_AP2-silenced plants. In cutin biosynthesis genes, expression of both PeCYP86A2 and PeDCR was significantly decreased in both groups. The expression of PeCYP77A4 was reduced significantly only in the PeERF1_AP2-silenced plants. Although PeGPAT expression was reduced in both silenced plants, but to a lesser degree. The expression of PeERF1 was significantly reduced in the petal-like lip of a big-lip variant. PeCYP77A4 and PeGPAT in the lip were also reduced, but PeDCR was not. Furthermore, heterologous overexpression of PeERF1 in the genus Arabidopsis produced leaves that were shiny on the adaxial surface. Taken together, our results show that in Phalaenopsis orchids PeERF1 plays an important role in formation of nanoridges during lip epidermis development.

5.
Front Plant Sci ; 9: 1043, 2018.
Article in English | MEDLINE | ID: mdl-30065747

ABSTRACT

The phytohormone abscisic acid (ABA) is involved in regulating seed dormancy and germination. A crucial step of ABA biosynthesis in higher plants is the oxidative cleavage of cis-epoxycarotenoids by 9-cis-epoxycarotenoid dioxygenase (NCED). Seed development in orchids is unusual because the embryos are minute in size, without obvious histodifferentiation, and lack endosperm. To understand the regulation of ABA biosynthesis in orchid seeds, we isolated and characterized a full-length cDNA encoding an NCED homolog, PtNCED1, from developing seeds of an ornamental orchid, Phaius tankervilliae. Germination percentage was high at 90 days after pollination (DAP), when a globular embryo proper with a degenerating suspensor was evident. After 90 DAP, seed maturation was accompanied by a decrease in water content and a concomitant increase in ABA content and PtNCED1 mRNA level along with a marked decrease in germination percentage. Mature seeds pretreated with NaOCl solution lowered ABA content and improved seed germination. Moreover, after seed germination, developing protocorms could respond to dehydration stress. Dehydration of protocorms stimulated an increase in PtNCED1 level along with ABA content. Our results provide evidence of the involvement of PtNCED1 in regulating endogenous ABA content in developing seeds and protocorms. The accumulation of endogenous ABA content in orchid seeds may have a critical role in seed dormancy and the protocorm response to water stress after seed germination.

6.
Bot Stud ; 58(1): 39, 2017 Sep 19.
Article in English | MEDLINE | ID: mdl-28929370

ABSTRACT

BACKGROUND: Termitomyces mushrooms are mutualistically associated with fungus-growing termites, which are widely considered to cultivate a monogenotypic Termitomyces symbiont within a colony. Termitomyces cultures isolated directly from termite colonies are heterokaryotic, likely through mating between compatible homokaryons. RESULTS: After pairing homokaryons carrying different haplotypes at marker gene loci MIP and RCB from a Termitomyces fruiting body associated with Odontotermes formosanus, we observed nuclear fusion and division, which greatly resembled meiosis, during each hyphal cell division and conidial formation in the resulting heterokaryons. Surprisingly, nuclei in homokaryons also behaved similarly. To confirm if meiotic-like recombination occurred within mycelia, we constructed whole-genome sequencing libraries from mycelia of two homokaryons and a heterokaryon resulting from mating of the two homokaryons. Obtained reads were aligned to the reference genome of Termitomyces sp. J132 for haplotype reconstruction. After removal of the recombinant haplotypes shared between the heterokaryon and either homokaryons, we inferred that 5.04% of the haplotypes from the heterokaryon were the recombinants resulting from homologous recombination distributed genome-wide. With RNA transcripts of four meiosis-specific genes, including SPO11, DMC1, MSH4, and MLH1, detected from a mycelial sample by real-time quantitative PCR, the nuclear behavior in mycelia was reconfirmed meiotic-like. CONCLUSION: Unlike other basidiomycetes where sex is largely restricted to basidia, Termitomyces maximizes sexuality at somatic stage, resulting in an ever-changing genotype composed of a myriad of coexisting heterogeneous nuclei in a heterokaryon. Somatic meiotic-like recombination may endow Termitomyces with agility to cope with termite consumption by maximized genetic variability.

7.
Bot Stud ; 58(1): 16, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28510199

ABSTRACT

BACKGROUND: Paphiopedilum rungsuriyanum from Northern Laos was discovered and described in 2014. It is characterized by having miniature tessellated leaves, a flower having a helmet shaped lip with a V-shaped neckline, and a semi-lunate, 3-dentate staminode with an umbo. These morphological features distinguish P. rungsuriyanum from the other known sections/subgenera of Paphiopedilum, making it difficult to group with existing infrageneric units. RESULTS: Paphiopedilum rungsuriyanum has chromosome number of 2n = 26. Fluorescence in situ hybridization study demonstrates that there are two 45S rDNA signals in the telomeric region of chromosomes, and more than 20 5S rDNA signals dispersed signals in the pericentromeric and centromeric regions. Phylogenetic analyses based on four nuclear (i.e. ITS, ACO, DEF4 and RAD51) and four plastid (i.e. atpI-atpH, matK, trnS-trnfM and ycf1) gene regions indicate that P. rungsuriyanum is nested in subgenus Paphiopedilum and is a sister to section Paphiopedilum. CONCLUSIONS: The results in combination with karyomorphological, rDNA FISH patterns, morphological and phylogenetic analyses suggest a new section Laosianum to accommodate this species in the current sectional circumscription of subgenus Paphiopedilum.

8.
Ann Bot ; 116(3): 403-11, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26105185

ABSTRACT

BACKGROUND AND AIMS: Although abscisic acid (ABA) is commonly recognized as a primary cause of seed dormancy, there is a lack of information on the role of ABA during orchid seed development. In order to address this issue, the localization and quantification of ABA were determined in developing seeds of Cypripedium formosanum. METHODS: The endogenous ABA profile of seeds was measured by enzyme-linked immunosorbent assay (ELISA). Temporal and spatial distributions of ABA in developing seeds were visualized by immunohistochemical staining with monoclonal ABA antibodies. Fluoridone was applied to test the causal relationship between ABA content and seed germinability. KEY RESULTS: ABA content was low at the proembryo stage, then increased rapidly from 120 to 150 days after pollination (DAP), accompanied by a progressive decrease in water content and seed germination. Immunofluorescence signals indicated an increase in fluorescence over time from the proembryo stage to seed maturation. From immunogold labelling, gold particles could be seen within the cytoplasm of embryo-proper cells during the early stages of seed development. As seeds approached maturity, increased localization of gold particles was observed in the periplasmic space, the plasmalemma between embryo-proper cells, the surface wall of the embryo proper, and the inner walls of inner seed-coat cells. At maturity, gold particles were found mainly in the apoplast, such as the surface wall of the embryo proper, and the shrivelled inner and outer seed coats. Injection of fluoridone into capsules resulted in enhanced germination of mature seeds. CONCLUSIONS: The results indicate that ABA is the key inhibitor of germination in C. formosanum. The distinct accumulation pattern of ABA suggests that it is synthesized in the cytosol of embryo cells during the early stages of seed development, and then exported to the apoplastic region of the cells for subsequent regulatory processes as seeds approach maturity.


Subject(s)
Abscisic Acid/metabolism , Orchidaceae/growth & development , Orchidaceae/metabolism , Plant Growth Regulators/metabolism , Seeds/growth & development , Seeds/metabolism
9.
Bot Stud ; 56(1): 22, 2015 Dec.
Article in English | MEDLINE | ID: mdl-28510831

ABSTRACT

The repeat sequences occupied more than 50 % of soybean genome. In order to understand where these repeat sequences distributed in soybean genome and its related Glycine species, we examined three new repeat sequences-soybean repeat sequence (SBRS1, SBRS2 and SBRS3), some nonspecific repeat sequences and 45S rDNA on several Glycine species, including annual and perennial accessions in this study. In the annual species, G. soja, signals for SBRS1 and ATT repeat can be found on each chromosome in GG genome, but those for SBRS2 and SBRS3 were located at three specific loci. In perennial Glycine species, these three SBR repeat frequently co-localized with 45S rDNA, two major 45S rDNA loci were found in all tetraploid species. However, an extra minor locus was found in one accession of the G. pescadrensis (Tab074), but not in another accession (Tab004). We demonstrate that some repetitive sequences are present in all Glycine species used in the study, but the abundancy is different in annual or perennial species. We suggest this study may provide additional information in investigations of the phylogeny in the Glycine species.

10.
PLoS One ; 9(12): e114617, 2014.
Article in English | MEDLINE | ID: mdl-25514186

ABSTRACT

Aneuploidy features a numerical chromosome variant that the number of chromosomes in the nucleus of a cell is not an exact multiple of the haploid number, which may have an impact on morphology and gene expression. Here we report a tertiary trisomy uncovered by characterizing a T-DNA insertion mutant (aur2-1/+) in the Arabidopsis (Arabidopsis thaliana) AURORA2 locus. Whole-genome analysis with DNA tiling arrays revealed a chromosomal translocation linked to the aur2-1 allele, which collectively accounted for a tertiary trisomy 2. Morphologic, cytogenetic and genetic analyses of aur2-1 progeny showed impaired male and female gametogenesis to various degrees and a tight association of the aur2-1 allele with the tertiary trisomy that was preferentially inherited. Transcriptome analysis showed overlapping and distinct gene expression profiles between primary and tertiary trisomy 2 plants, particularly genes involved in response to stress and various types of external and internal stimuli. Additionally, transcriptome and gene ontology analyses revealed an overrepresentation of nuclear-encoded organelle-related genes functionally involved in plastids, mitochondria and peroxisomes that were differentially expressed in at least three if not all Arabidopsis trisomics. These observations support a previous hypothesis that aneuploid cells have higher energy requirement to overcome the detrimental effects of an unbalanced genome. Moreover, our findings extend the knowledge of the complex nature of the T-DNA insertion event influencing plant genomic integrity by creating high-grade trisomy. Finally, gene expression profiling results provide useful information for future research to compare primary and tertiary trisomics for the effects of aneuploidy on plant cell physiology.


Subject(s)
Arabidopsis/genetics , Gametogenesis, Plant/genetics , Gene Expression Regulation, Plant/genetics , Trisomy , Arabidopsis/physiology , Aurora Kinase A/genetics , DNA Primers , Energy Metabolism/genetics , Gametogenesis, Plant/physiology , Gene Expression Profiling , Microscopy, Interference , Mutagenesis, Insertional/genetics , Pollen/cytology , Pollen/physiology
11.
J Exp Bot ; 65(8): 2023-37, 2014 May.
Article in English | MEDLINE | ID: mdl-24591055

ABSTRACT

The anther-specific gene LLA1271 isolated from lily (Lilium longiflorum Thunb.) anthers is novel and exists in two forms. The protein encoded by LLA1271 may represent an adhesin-like protein first found in higher plants. The protein contains a typical N-terminal signal peptide followed by a highly conserved repeat domain. The LLA1271 gene is temporally expressed at the phase of microspore development. RNA blot and RNA in situ hybridization analyses demonstrated that the gene was expressed both in the tapetum and in the microspore. The gene is endo- and exogenously induced by gibberellin. Studies with the gibberellin biosynthesis inhibitor uniconazole and an inhibitor of ethylene activity, 2,5-norbornadien (NBD), revealed that LLA1271 is negatively regulated by ethylene, and a cross-talk of regulation between gibberellin and ethylene occurs in young anthers. The treatment with NBD caused the tapetum to become densely cytoplasmic and highly polarized, whereas uniconazole arrested tapetal development in a state close to that of a tapetum without treatment. The LLA1271 protein is heat stable and heterogeneous. An immunoblot of separated protein fractions of the anther revealed that the LLA1271 protein was detected in protein fraction of the microspore released from the cell wall by treatment with either 0.5% or 2% Triton X-100. Ectopic expression of LLA1271 resulted in impaired stamen and low pollen germination. Scanning electron microscopy of TAP::LLA1271 pollen showed distorted exine formation and patterning. The LLA1271 protein once synthesized in both the tapetum and microspore is secreted and deposited on the surface of microspores, moderately affecting exine formation and patterning.


Subject(s)
Flowers/genetics , Gene Expression Regulation, Plant , Lilium/genetics , Plant Proteins/genetics , Amino Acid Sequence , Base Sequence , Ethylenes/metabolism , Flowers/growth & development , Flowers/metabolism , Gibberellins/genetics , Gibberellins/metabolism , Lilium/growth & development , Lilium/metabolism , Lilium/ultrastructure , Microscopy, Electron, Scanning , Plant Proteins/chemistry , Plant Proteins/metabolism , Pollen/growth & development , Pollen/ultrastructure , Reverse Transcriptase Polymerase Chain Reaction , Sequence Alignment
12.
New Phytol ; 202(3): 1024-1042, 2014 May.
Article in English | MEDLINE | ID: mdl-24571782

ABSTRACT

The Phalaenopsis orchid produces complex flowers that are commercially valuable, which has promoted the study of its flower development. E-class MADS-box genes, SEPALLATA (SEP), combined with B-, C- and D-class MADS-box genes, are involved in various aspects of plant development, such as floral meristem determination, organ identity, fruit maturation, seed formation and plant architecture. Four SEP-like genes were cloned from Phalaenopsis orchid, and the duplicated PeSEPs were grouped into PeSEP1/3 and PeSEP2/4. All PeSEPs were expressed in all floral organs. PeSEP2 expression was detectable in vegetative tissues. The study of protein-protein interactions suggested that PeSEPs may form higher order complexes with the B-, C-, D-class and AGAMOUS LIKE6-related MADS-box proteins to determine floral organ identity. The tepal became a leaf-like organ when PeSEP3 was silenced by virus-induced silencing, with alterations in epidermis identity and contents of anthocyanin and chlorophyll. Silencing of PeSEP2 had minor effects on the floral phenotype. Silencing of the E-class genes PeSEP2 and PeSEP3 resulted in the downregulation of B-class PeMADS2-6 genes, which indicates an association of PeSEP functions and B-class gene expression. These findings reveal the important roles of PeSEP in Phalaenopsis floral organ formation throughout the developmental process by the formation of various multiple protein complexes.


Subject(s)
Flowers/growth & development , Flowers/genetics , Genes, Plant , Orchidaceae/growth & development , Orchidaceae/genetics , Plant Proteins/genetics , Amino Acid Sequence , Cell Shape/genetics , Cloning, Molecular , Flowers/ultrastructure , Gene Expression Profiling , Gene Expression Regulation, Plant , Gene Regulatory Networks , Gene Silencing , MADS Domain Proteins/genetics , MADS Domain Proteins/metabolism , Models, Biological , Molecular Sequence Data , Organ Specificity/genetics , Organogenesis/genetics , Phenotype , Phylogeny , Plant Epidermis/cytology , Plant Epidermis/ultrastructure , Plant Proteins/chemistry , Plant Proteins/metabolism , Plants, Genetically Modified , Promoter Regions, Genetic/genetics , Protein Binding
13.
J Exp Bot ; 64(12): 3869-84, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23956416

ABSTRACT

Orchidaceae, one of the largest angiosperm families, has significant commercial value. Isolation of genes involved in orchid floral development and morphogenesis, scent production, and colouration will advance knowledge of orchid flower formation and facilitate breeding new varieties to increase the commercial value. With high-throughput virus-induced gene silencing (VIGS), this study identified five transcription factors involved in various aspects of flower morphogenesis in the orchid Phalaenopsis equestris. These genes are PeMADS1, PeMADS7, PeHB, PebHLH, and PeZIP. Silencing PeMADS1 and PebHLH resulted in reduced flower size together with a pelaloid column containing petal-like epidermal cells and alterations of epidermal cell arrangement in lip lateral lobes, respectively. Silencing PeMADS7, PeHB, and PeZIP alone resulted in abortion of the first three fully developed flower buds of an inflorescence, which indicates the roles of the genes in late flower development. Furthermore, double silencing PeMADS1 and PeMADS6, C- and B-class MADS-box genes, respectively, produced a combinatorial phenotype with two genes cloned in separate vectors. Both PeMADS1 and PeMADS6 are required to ensure the normal development of the lip and column as well as the cuticle formation on the floral epidermal cell surface. Thus, VIGS allows for unravelling the interaction between two classes of MADS transcription factors for dictating orchid floral morphogenesis.


Subject(s)
Gene Expression Regulation, Plant , Orchidaceae/growth & development , Orchidaceae/genetics , Plant Proteins/genetics , Transcription Factors/genetics , Expressed Sequence Tags , Flowers/genetics , Flowers/growth & development , Flowers/metabolism , Gene Silencing , Molecular Sequence Data , Orchidaceae/metabolism , Orchidaceae/virology , Phenotype , Phylogeny , Plant Proteins/metabolism , Potexvirus/genetics , Sequence Alignment , Sequence Analysis, DNA , Transcription Factors/metabolism
14.
Plant Sci ; 185-186: 156-60, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22325876

ABSTRACT

Based mainly on morphological features and geographical distribution, Begonia×chungii (2n=22) was recently reported as a natural hybrid between B. longifolia and B. palmata in Taiwan. This study aims to confirm the hybridity of B.×chungii and to sort out the genome constitutions of its putative parents, using genomic in situ hybridization (GISH). Genomic DNAs of both parental species were used as probes for B.×chungii and the experimental F(1) hybrid, B. palmata×B. longifolia, in GISH analyses. Bicolor-GISH analyses in B.×chungii showed that the 22 chromosomes consisted of six chromosomes hybridized with a probe derived from the B. palmata genome, six with another probe from the B. longifolia genome and the remaining ten with both genomes overlapped. Meanwhile, bicolor-GISH in B. palmata×B. longifolia showed a remarkable similarity to that of B.×chungii. The reciprocal GISH results between B. longifolia and B. palmata were comparable. Our GISH analyses confirmed that B.×chungii is a natural F(1) hybrid between B. longifolia and B. palmata. Genomes of the parental species were shown to be partially homologous, suggesting a derived common ancestral genome in them.


Subject(s)
Begoniaceae/genetics , Chimera/genetics , Genome, Plant/genetics , In Situ Hybridization/methods , Chromosomes, Plant/genetics , DNA, Plant/genetics , Diploidy , Hybridization, Genetic , Meristem/genetics , Taiwan
15.
Plant Cell Physiol ; 52(9): 1546-59, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21771867

ABSTRACT

Pollination is composed of cell-cell communication and complicated signaling cascades that regulate pollen tube growth and guidance toward the ovules for double fertilization, and is critical for successful sexual reproduction. Exploring expression profiles of in vivo grown pollen tubes is important. Nevertheless, it is difficult to obtain accessible pollen tubes for profiling studies in most model plants. By taking advantage of the hollow styles of lily (Lilium longiflorum), in vivo pollen tubes harvested from pollinated styles which had been cut open were used here to study their protein and transcript profiles. Pollination quantitatively and qualitatively altered the total protein composition of elongating pollen tubes. cDNAs generated and amplified from total RNAs of 24 h in vivo grown and 12 h in vitro cultured pollen tubes were used for suppression subtractive hybridization analyses and preparation of home-made array chips. Microarray analyses conducted with different probe sets revealed 16 transcripts specifically present and/or enriched in in vivo pollen tubes. Reverse transcription-PCR (RT-PCR), in situ hybridization and Northern blotting were applied to validate their unique pollination-induced expression features. Interestingly, several transcripts were simultaneously detected on the stylar transmitting tract epidermis, where in vivo pollen tubes tightly adhered during pollination. Their deduced amino acid sequences showed that most of them encoded small proteins and could be classified into several families. Transient assay revealed filament-like structures decorated by these proteins and one probably localized in the generative cell. These small peptides might be critical for pollen tube growth during pollination, and further exploration of their biological functions and mechanisms of action are of great interest.


Subject(s)
Lilium/metabolism , Plant Proteins/metabolism , Pollen Tube/metabolism , Pollination , Amino Acid Sequence , Cloning, Molecular , DNA, Complementary/genetics , DNA, Plant/genetics , Gene Expression Regulation, Plant , Lilium/genetics , Molecular Sequence Data , Oligonucleotide Array Sequence Analysis , Plant Proteins/genetics , Pollen Tube/genetics , Transcriptome
16.
Plant Sci ; 181(3): 300-8, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21763541

ABSTRACT

Wild species of rice with many valuable agronomic traits are an important genetic resource for improving cultivated rice by wide hybridization. Genome- or chromosome-specific markers are useful for monitoring genome introgression and for identifying genome components. From 47 random amplified polymorphic DNAs (RAPDs) of nine Oryza species, three bands (Ogla225, Opun225, and Opun246) were found to be genome specific with distinct sizes. Their specificities were further characterized by Southern hybridization, sequence analysis, and fluorescent in situ hybridization (FISH). Ogla225 is specifically amplified from the AA genome but homologous sequences were conserved among Oryza species. Opun225 occurs at a low copy number although is specifically amplified from Oryza punctata. There are estimated 2000-3300 repeats of Opun246 in each haploid genome of Oryza species with the BB or BBCC genome. Clusters of Opun246 repeats were detected at heterochromatic regions on almost all chromosomes of the BB genomes by FISH. Opun246 may be a useful marker for monitoring the introgression of BB genome or for identifying the conserved components of BB genome in genetic resource. The results from this study and our previous study both indicate that numerous unique repeats play role in the differentiation of the BB genome from other Oryza genomes.


Subject(s)
DNA, Plant/genetics , Genome, Plant , Oryza/genetics , Genetic Markers , Genetic Variation , In Situ Hybridization, Fluorescence , Random Amplified Polymorphic DNA Technique , Repetitive Sequences, Nucleic Acid
17.
Plant Cell Physiol ; 52(9): 1515-31, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21757456

ABSTRACT

Orchidaceae are an excellent model to examine perianth development because of their sophisticated floral architecture. In this study, we identified 24 APETALA3 (AP3)-like and 13 PISTILLA (PI)-like genes from 11 species of orchids and characterized them into four AP3- and two PI-duplicated homologs. The first duplication event in AP3 homologs occurring in the early evolutionary history of the Orchidaceae gave rise to AP3A and AP3B clades. Further duplication events resulted in four subclades, namely AP3A1, AP3A2, AP3B1 and AP3B2, during the evolution of Orchidaceae. The AP3 paralogous genes were expressed throughout inflorescence and floral bud development. From the in situ hybridization results, we noticed that the transition timings from ubiquitous to constrained expression in floral organs for both clades are different. The transition point of expression of the AP3A clade (clades 3 and 4) was at the late floral organ primordia stage. In contrast, that for the AP3B clade (clades 1 and 2) was not observed until the late inflorescence and floral bud stages. In addition, the AP3 orthologous genes revealed diverse expression patterns in various species of orchids, whereas the PI homologs were uniformly expressed in all floral whorls. AP3A2 orthologs play a noticeable role in lip formation because of their exclusive expression in the lip. Further evidence comes from the ectopic expression of AP3A2 detected in the lip-like petals extending from the lip in four sets of peloric mutants. Finally, a Homeotic Orchid Tepal (HOT) model is proposed, in which dualistic characters of duplicated B-class MADS-box genes are involved in orchid perianth development and growth.


Subject(s)
Flowers/growth & development , Genes, Duplicate , MADS Domain Proteins/metabolism , Orchidaceae/genetics , Cloning, Molecular , Flowers/genetics , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , MADS Domain Proteins/genetics , Orchidaceae/growth & development , Phylogeny , Plant Proteins/genetics , Plant Proteins/metabolism
18.
Ann Bot ; 108(1): 113-21, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21576078

ABSTRACT

BACKGROUND AND AIMS: Lady's slipper orchids (Paphiopedilum) are of high value in floriculture, and interspecific hybridization has long been used for breeding improved cultivars; however, information regarding the genome affinities of species and chromosome pairing behaviour of the hybrids remains almost unknown. The present work analyses the meiotic behaviour of interspecific hybrids by genomic in situ hybridization and cytologically evaluates the genomic relationships among parental species. METHODS: Eight interspecific F(1) hybrids of Paphiopedilum species in various subgenera or sections were investigated in this study. The chromosome behaviour in meiosis of these interspecific hybrids was analysed and subjected to genomic in situ hybridization and fluorescent in situ hybridization. KEY RESULTS: Genomic in situ hybridization was demonstrated as an efficient method to differentiate between Paphiopedilum genomes and to visualize the chromosome pairing affinities in interspecific F(1) hybrids, clarifying the phylogenetic distances among these species. Comparatively regular chromosome pairing observed in the hybrids of P. delenatii × P. bellatulum, P. delenatii × P. rothschildianum and P. rothschildianum × P. bellatulum suggested high genomic affinities and close relationships between parents of each hybrid. In contrast, irregular chromosome associations, such as univalents, trivalents and quadrivalents occurred frequently in the hybrids derived from distant parents with divergent karyotypes, such as P. delenatii × P. callosum, P. delenatii × P. glaucophyllum, P. rothschildianum × P. micranthum and P. rothschildianum × P. moquetteanum. The existence of multivalents and autosyndesis demonstrated by genomic in situ hybridization in this study indicates that some micro-rearrangements and other structural alterations may also play a part in differentiating Paphiopedilum species at chromosomal level, demonstrated as different chromosome pairing affinities in interspecific hybrids. CONCLUSIONS: The results indicate that genome homology and the interaction of genetic factors, but not chromosome number nor karyotype similarity, determine the chromosome pairing behaviour in Paphiopedilum hybrids.


Subject(s)
Chromosome Pairing/genetics , Gene Transfer, Horizontal/genetics , Genome, Plant/genetics , In Situ Hybridization/methods , Orchidaceae/genetics , Breeding , DNA, Ribosomal/genetics , Genetic Loci , In Situ Hybridization, Fluorescence , Karyotyping , Meiosis/genetics , Orchidaceae/ultrastructure , Phylogeny , Pollen/genetics , Species Specificity
19.
Genomics ; 96(3): 181-90, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20580815

ABSTRACT

Contrary to the chromosomal polymorphism of 45S ribosomal genes (45S rDNA) loci in other Oryza species, each of Oryza australiensis and Oryza brachyantha has only one 45S rDNA locus at the most conserved position of 45S rDNAs in Oryza. O. australiensis and O. brachyantha are known phylogenetically distant and have extremely different genome sizes among diploid Oryza species. This study reveals that the sequences and organizations of intergenic spacer (IGS) for 45S rDNA of both O. australiensis and O. brachyantha are different from other Oryza species. The IGS of O. australiensis contains 13 tandem repeats and only one transcriptional initiation site, while there are four tandem repeats and three transcriptional initiation sites in the IGS of O. brachyantha. Our results suggest different evolution processes of orthologous rDNA loci in the genus Oryza. Here we also demonstrate an efficient strategy to study locus-specific IGS before whole genome sequences data are available.


Subject(s)
Chromosomes, Plant/genetics , DNA, Ribosomal Spacer/genetics , Evolution, Molecular , Genetic Variation , Oryza/genetics , RNA, Ribosomal/genetics , Blotting, Southern , Gene Components , In Situ Hybridization, Fluorescence , Polymerase Chain Reaction , Species Specificity , Tandem Repeat Sequences/genetics , Transcription Initiation Site
20.
J Agric Food Chem ; 57(22): 10916-21, 2009 Nov 25.
Article in English | MEDLINE | ID: mdl-19919123

ABSTRACT

Adlay (Coix lachryma-jobi L. var. ma-yuen Stapf) is regarded as a nutritive food source as well as herbal medicine. The food nutrition is a consequence of its high protein content and superior amino acid composition. From ca. 200 expressed sequence tag (EST) sequences in maturing adlay grains, clones encoding precursor polypeptides of 10 seed storage proteins in the prolamin family, including 8 alpha-coixin isoforms, 1 delta-coixin, and 1 gamma-coixin, were identified. Full-length cDNA fragments encoding these 10 coixins were obtained by PCR cloning. Mass spectrometric analyses confirmed the presence of these 10 coixins in the extract of adlay grain. Calculated amino acid compositions indicate that all 10 coixins are rich in glutamine (>20% in alpha-coixin isoforms, 13.3% in delta-coixin, and 31.2% in gamma-coixin). The 8 alpha-coixin isoforms are low in methionine, cysteine, and lysine (on average, 0.8, 0.6, and 0.1%, respectively). However, the delta-coixin is a sulfur-rich protein (18.2% methionine and 9.1% cysteine), and the gamma-coixin is a nutritive protein composed of 2.0% methionine, 6.6% cysteine, 2.6% lysine, and 8.9% histidine. The company of delta-coixin and gamma-coixin with alpha-coixin isoforms enhances the nutritional value of alday grain for human consumption.


Subject(s)
Cloning, Molecular , Coix/chemistry , Mass Spectrometry , Nutritive Value , Plant Proteins/chemistry , Plant Proteins/genetics , Amino Acid Sequence , Amino Acids/analysis , DNA, Complementary/genetics , DNA, Plant/analysis , DNA, Plant/genetics , Molecular Sequence Data , Polymerase Chain Reaction , Seeds/chemistry , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...