Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 54
Filter
Add more filters










Publication year range
1.
Chem Biol Drug Des ; 96(5): 1305-1314, 2020 11.
Article in English | MEDLINE | ID: mdl-32526055

ABSTRACT

Hybrid analogues of the µ opioid agonists endomorphin and [Dmt1 ]DALDA (H-Dmt-D-Arg-Phe-Lys-NH2 , Dmt = 2',6'-dimethyltyrosine) containing cis-4-amino-Pro, trans-4-amino-Pro, cis-4-aminoethyl-Pro or cis-4-guanidinylethyl-Pro in the 2 position of the peptide sequence were synthesized. None of the compounds retained high µ opioid agonist activity and, unexpectedly, substitution of cis-4-amino-Pro resulted in a novel class of potent µ opioid antagonists. In particular, the compound H-Dmt-cis-4-amino-Pro-Trp-Lys-NH2 (CZ-1) turned out to be a highly selective µ opioid antagonist with ~1 nM µ receptor binding affinity.


Subject(s)
Narcotic Antagonists/pharmacology , Oligopeptides/chemistry , Receptors, Opioid, mu/antagonists & inhibitors , Animals
2.
J Org Chem ; 84(10): 6006-6016, 2019 05 17.
Article in English | MEDLINE | ID: mdl-30957495

ABSTRACT

Solid-phase chemistry for the synthesis and Diels-Alder reaction of Fmoc-protected azopeptides has been developed and used to construct aza-pipecolyl (azaPip) peptides. Considering their ability to induce electronic and structural constraints that favor cis-amide isomer geometry and type VI ß-turn conformation in model peptides, azaPip residues have now been introduced into biologically relevant targets by this enabling synthetic method. Turn conformers were shown to be important for receptor affinity, selectivity, and activity by employing azaPip residues to study the conformational requirements of opioid and cluster of differentiation 36 receptor peptide ligands.

3.
Pept Sci (Hoboken) ; 111(1)2019 Jan.
Article in English | MEDLINE | ID: mdl-30801053

ABSTRACT

Head-to-tail cyclized analogues of the µ opioid receptor (MOR) agonist tetrapeptides DALDA (H-Tyr-D-Arg-Phe-Lys-NH2 and [Dmt1]DALDA (H-Dmt-D-Arg-Phe-Lys-NH2; Dmt = 2',6'-dimethyltyrosine) and their enantiomers (mirror-image isomers) were synthesized and pharmacologically characterized in vitro. Three pairs of enantiomeric cyclic peptides with both mirror-image isomers having equipotent MOR binding affinities but different binding affinities at the δ and κ opioid receptors were identified. The cyclic peptide enantiomers c[-D-Arg-Phe-Lys-Tyr-] (1) and c[-Arg-D-Phe-D-Lys-D-Tyr-] (2) showed nearly identical MOR binding affinity (1 - 2 nM) and equipotent MOR antagonist activity. The results of a MOR docking study indicated a very similar binding mode of the two enantiomers with nearly complete spatial overlap of the peptide ring structures and side chain interactions with the same MOR residues. Compounds 1 and 2 represent the first pair of enantiomeric G-protein-coupled receptor (GPCR) ligands having multiple chiral centers, with both optical antipodes showing equal, low nanomolar receptor binding affinity.

5.
Bioorg Med Chem Lett ; 28(13): 2320-2323, 2018 07 15.
Article in English | MEDLINE | ID: mdl-29853330

ABSTRACT

In this study, affinities and activities of derivatized analogues of Dmt-dermorphin[1-4] (i.e. Dmt-d-Ala-Phe-GlyNH2, Dmt = 2',6'-dimethyl-(S)-tyrosine) for the µ opioid receptor (MOP) and δ opioid receptor (DOP) were evaluated using radioligand binding studies, functional cell-based assays and isolated organ bath experiments. By means of solid-phase or solution-phase Suzuki-Miyaura cross-couplings, various substituted regioisomers of the phenylalanine moiety in position 3 of the sequence were prepared. An 18-membered library of opioid tetrapeptides was generated via screening of the chemical space around the Phe3 side chain. These substitutions modulated bioactivity, receptor subtype selectivity and highly effective ligands with subnanomolar binding affinities, contributed to higher functional activities and potent analgesic actions. In search of selective peptidic ligands, we show here that the Suzuki-Miyaura reaction is a versatile and robust tool which could also be deployed elsewhere.


Subject(s)
Analgesics, Opioid/therapeutic use , Oligopeptides/therapeutic use , Receptors, Opioid, delta/agonists , Receptors, Opioid, mu/agonists , Analgesics, Opioid/chemical synthesis , Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Animals , Guinea Pigs , HEK293 Cells , Humans , Ligands , Male , Mice , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/pharmacology , Rats, Sprague-Dawley
6.
ACS Med Chem Lett ; 8(11): 1177-1182, 2017 Nov 09.
Article in English | MEDLINE | ID: mdl-29152051

ABSTRACT

Herein, the synthesis of novel conformationally constrained amino acids, 4-amino-8-bromo-2-benzazepin-3-one (8-Br-Aba), 3-amino-3,4-dihydroquinolin-2-one, and regioisomeric 4-amino-naphthoazepinones (1- and 2-Ana), is described. Introduction of these constricted scaffolds into the N-terminal tetrapeptide of dermorphin (i.e., H-Tyr-d-Ala-Phe-Gly-NH2) induced significant shifts in binding affinity, selectivity, and in vitro activity at the µ- and δ-opioid receptors (MOP and DOP, respectively). A reported constrained µ-/δ-opioid lead tetrapeptide H-Dmt-d-Arg-Aba-Gly-NH2 was modified through application of various constrained building blocks to identify optimal spatial orientations in view of activity at the opioid receptors. Interestingly, when the aromatic moieties were turned toward the C-terminus of the peptide sequences, (partial) (ant)agonism at MOP and weak (ant)agonism at DOP were noticed, whereas the incorporation of the 1-Ana residue led toward balanced low nanomolar MOP/DOP binding and in vitro agonism.

7.
ACS Chem Neurosci ; 8(10): 2315-2324, 2017 10 18.
Article in English | MEDLINE | ID: mdl-28699350

ABSTRACT

The lower efficacy of opioids in neuropathic pain may be due to the increased activity of pronociceptive systems such as substance P. We present evidence to support this hypothesis in this work from the spinal cord in a neuropathic pain model in mice. Biochemical analysis confirmed the elevated mRNA and protein level of pronociceptive substance P, the major endogenous ligand of the neurokinin-1 (NK1) receptor, in the lumbar spinal cord of chronic constriction injury (CCI)-mice. To improve opioid efficacy in neuropathic pain, novel compounds containing opioid agonist and neurokinin 1 (NK1) receptor antagonist pharmacophores were designed. Structure-activity studies were performed on opioid agonist/NK1 receptor antagonist hybrid peptides by modification of the C-terminal amide substituents. All compounds were evaluated for their affinity and in vitro activity at the mu opioid (MOP) and delta opioid (DOP) receptors, and for their affinity and antagonist activity at the NK1 receptor. On the basis of their in vitro profiles, the analgesic properties of two new bifunctional hybrids were evaluated in naive and CCI-mice, representing models for acute and neuropathic pain, respectively. The compounds were administered to the spinal cord by lumbar puncture. In naive mice, the single pharmacophore opioid parent compounds provided better analgesic results, as compared to the hybrids (max 70% MPE), raising the acute pain threshold close to 100% MPE. On the other hand, the opioid parents gave poor analgesic effects under neuropathic pain conditions, while the best hybrid delivered robust (close to 100% MPE) and long lasting alleviation of both tactile and thermal hypersensitivity. The results presented emphasize the potential of opioid/NK1 hybrids in view of analgesia under nerve injury conditions.


Subject(s)
Analgesics, Opioid/pharmacology , Analgesics/pharmacology , Ligands , Animals , Chronic Disease , Constriction , Mice , Neuralgia/drug therapy , Receptors, Neurokinin-1/drug effects , Receptors, Neurokinin-1/metabolism , Receptors, Opioid, delta/drug effects , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/drug effects , Spinal Cord/drug effects , Spinal Cord Injuries/drug therapy
8.
J Med Chem ; 59(19): 9243-9254, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27676089

ABSTRACT

Head-to-tail cyclization of the µ opioid receptor (MOR) agonist [Dmt1]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2 (9; Dmt = 2',6'-dimethyltyrosine) resulted in a highly active, selective MOR antagonist, c[-d-Arg-Phe-Lys-Dmt-] (1) ("cyclodal"), with subnanomolar binding affinity. A docking study of cyclodal using the crystal structure of MOR in the inactive form showed a unique binding mode with the two basic residues of the ligand forming salt bridges with the Asp127 and Glu229 receptor residues. Cyclodal showed high plasma stability and was able to cross the blood-brain barrier to reverse morphine-induced, centrally mediated analgesia when given intravenously. Surprisingly, the mirror-image isomer (optical antipode) of cyclodal, c[-Arg-d-Phe-d-Lys-d-Dmt-] (2), also turned out to be a selective MOR antagonist with 1 nM binding affinity, and thus, these two compounds represent the first example of mirror image opioid receptor ligands with both optical antipodes having high binding affinity. Reduction of the Lys-Dmt peptide bond in cyclodal resulted in an analogue, c[-d-Arg-Phe-LysΨ[CH2NH]Dmt-] (8), with MOR agonist activity.


Subject(s)
Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, Opioid, mu/antagonists & inhibitors , Amino Acid Sequence , Animals , Brain/drug effects , Brain/metabolism , Guinea Pigs , Isomerism , Male , Mice , Molecular Docking Simulation , Peptides, Cyclic/pharmacokinetics , Rats, Sprague-Dawley , Receptors, Opioid, mu/metabolism
9.
Bioorg Med Chem Lett ; 26(15): 3629-31, 2016 08 01.
Article in English | MEDLINE | ID: mdl-27301366

ABSTRACT

Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent µ opioid agonist peptide with mitochondria-targeted antioxidant activity were prepared by replacing Dmt with various 2',6'-dialkylated Tyr analogues, including 2',4',6'-trimethyltyrosine (Tmt), 2'-ethyl-6'-methyltyrosine (Emt), 2'-isopropyl-6'-methyltyrosine (Imt) and 2',6'-diethyltyrosine (Det). All compounds were selective µ opioid agonists and the Tmt(1)-, Emt(1) and Det(1)-analogues showed subnanomolar µ opioid receptor binding affinities. The Tmt(1)- and Emt(1)-analogues showed improved antioxidant activity compared to the Dmt(1)-parent peptide in the DPPH radical-scavenging capacity assay, and thus are of interest as drug candidates for neuropathic pain treatment.


Subject(s)
Oligopeptides/pharmacology , Receptors, Opioid, mu/agonists , Dose-Response Relationship, Drug , Humans , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Structure-Activity Relationship
10.
J Med Chem ; 59(8): 3777-92, 2016 04 28.
Article in English | MEDLINE | ID: mdl-27035422

ABSTRACT

Herein, the opioid pharmacophore H-Dmt-d-Arg-Aba-ß-Ala-NH2 (7) was linked to peptide ligands for the nociceptin receptor. Combination of 7 and NOP ligands (e.g., H-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) led to binding affinities in the low nanomolar domain. In vitro, the hybrids behaved as agonists at the opioid receptors and antagonists at the nociceptin receptor. Intravenous administration of hybrid 13a (H-Dmt-d-Arg-Aba-ß-Ala-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2) to mice resulted in potent and long lasting antinociception in the tail-flick test, indicating that 13a was able to permeate the BBB. This was further supported by a cell-based BBB model. All hybrids alleviated allodynia and hyperalgesia in neuropathic pain models. Especially with respect to hyperalgesia, they showed to be more effective than the parent compounds. Hybrid 13a did not result in significant respiratory depression, in contrast to an equipotent analgesic dose of morphine. These hybrids hence represent a promising avenue toward analgesics for the dual treatment of acute and neuropathic pain.


Subject(s)
Narcotic Antagonists/pharmacology , Neuralgia/drug therapy , Pain Management/methods , Peptides/pharmacology , Receptors, Opioid/drug effects , Acute Disease , Amino Acid Sequence , Animals , Behavior, Animal/drug effects , Blood-Brain Barrier , Cell Membrane Permeability/drug effects , Humans , Ligands , Male , Mice , Peptides/chemistry , Peptides/pharmacokinetics , Rats , Rats, Sprague-Dawley , Nociceptin Receptor
11.
ACS Med Chem Lett ; 6(12): 1209-14, 2015 Dec 10.
Article in English | MEDLINE | ID: mdl-26713106

ABSTRACT

Herein, the synthesis and biological evaluation of dual opioid agonists-neurokinin 1 receptor (NK1R) antagonists is described. In these multitarget ligands, the two pharmacophores do not overlap, and this allowed maintaining high NK1R affinity and antagonist potency in compounds 12 and 13. Although the fusion of the two ligands resulted in slightly diminished opioid agonism at the µ- and δ-opioid receptors (MOR and DOR, respectively), as compared to the opioid parent peptide, balanced MOR/DOR activities were obtained. Compared to morphine, compounds 12 and 13 produced more potent antinociceptive effects in both acute (tail-flick) and neuropathic pain models (von Frey and cold plate). Similarly to morphine, analgesic tolerance developed after repetitive administration of these compounds. To our delight, compound 12 did not produce cross-tolerance with morphine and high antihyperalgesic and antiallodynic effects could be reinstated after chronic administration of each of the two compounds.

12.
Eur J Med Chem ; 92: 64-77, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25544687

ABSTRACT

A reported mixed opioid agonist - neurokinin 1 receptor (NK1R) antagonist 4 (Dmt-D-Arg-Aba-Gly-(3',5'-(CF3)2)NMe-benzyl) was modified to identify important features in both pharmacophores. The new dual ligands were tested in vitro and subsequently two compounds (lead structure 4 and one of the new analogues 22, Dmt-D-Arg-Aba-ß-Ala-NMe-Bn) were selected for in vivo behavioural assays, which were conducted in acute (tail-flick) and neuropathic pain models (cold plate and von Frey) in rats. Compared to the parent opioid compound 33 (without NK1R pharmacophore), hybrid 22 was more active in the neuropathic pain models. Attenuation of neuropathic pain emerged from NK1R antagonism as demonstrated by the pure NK1R antagonist 6. Surprisingly, despite a lower in vitro activity at NK1R in comparison with 4, compound 22 was more active in the neuropathic pain models. Although potent analgesic effects were observed for 4 and 22, upon chronic administration, both manifested a tolerance profile similar to that of morphine and cross tolerance with morphine in a neuropathic pain model in rat.


Subject(s)
Neurokinin-1 Receptor Antagonists/pharmacology , Peptidomimetics/chemical synthesis , Receptors, Opioid/agonists , Animals , CHO Cells , Cell Line , Cricetulus , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Conformation , Peptidomimetics/chemistry , Rats , Rats, Wistar , Receptors, Neurokinin-1/metabolism
13.
Bioorg Med Chem ; 22(17): 4581-6, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25129170

ABSTRACT

There is strong evidence to indicate that a positively charged nitrogen of endogenous and exogenous opioid ligands forms a salt bridge with the Asp residue in the third transmembrane helix of opioid receptors. To further examine the role of this electrostatic interaction in opioid receptor binding and activation, we synthesized 'carba'-analogues of the highly potent µ opioid analgesic carfentanil (3), in which the piperidine nitrogen was replaced with a carbon. The resulting trans isomer (8b) showed reduced, but still significant MOR binding affinity (Ki(µ)=95.2nM) with no MOR versus DOR binding selectivity and was a MOR partial agonist. The cis isomer (8a) was essentially inactive. A MOR docking study indicated that 8b bound to the same binding pocket as parent 3, but its binding mode was somewhat different. A re-evaluation of the uncharged morphine derivative N-formylnormorphine (9) indicated that it was a weak MOR antagonist showing no preference for MOR over KOR. Taken together, the results indicate that deletion of the positively charged nitrogen in µ opioid analgesics reduces MOR binding affinity by 2-3 orders of magnitude and may have pronounced effects on the intrinsic efficacy and on the opioid receptor selectivity profile.


Subject(s)
Fentanyl/analogs & derivatives , Receptors, Opioid, mu/agonists , Dose-Response Relationship, Drug , Fentanyl/chemical synthesis , Fentanyl/chemistry , Fentanyl/pharmacology , Molecular Docking Simulation , Molecular Structure , Stereoisomerism , Structure-Activity Relationship
14.
ACS Med Chem Lett ; 5(4): 352-357, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24839540

ABSTRACT

In this study the µ opioid receptor (MOR) ligands DALDA (Tyr-d-Arg-Phe-Lys-NH2) and Dmt1-DALDA (Dmt-d-Arg-Phe-Lys-NH2, Dmt = 2',6'-dimethyltyrosine) were glycosylated at the N- or C-terminus. Subsequently, the modified peptides were subjected to in vitro and in vivo evaluation. In contrast to the N-terminally modified peptide (3), all peptide analogues derivatized at the C-terminus (4-7) proved to possess high affinity and agonist potency at both MOR and DOR (δ opioid receptor). Results of the Caco-2 monolayer permeation, as well as in vitro blood-brain barrier model experiments, showed that, in the case of compound 4, the glycosylation only slightly diminished the lumen-to-blood and blood-to-lumen transport. Altogether, these experiments were indicative of transcellular transport but not active transport. In vivo assays demonstrated that the peptides were capable of (i) crossing the blood-brain barrier (BBB) and (ii) activating both the spinal ascending as well as the descending opioid pathways, as determined by the tail-flick and hot-plate assays, respectively. In contrast to the highly selective MOR agonist Dmt1-DALDA 1, compounds 4-7 are mixed MOR/DOR agonists, expected to produce reduced opioid-related side effects.

15.
Bioorg Med Chem ; 22(7): 2333-8, 2014 Apr 01.
Article in English | MEDLINE | ID: mdl-24602401

ABSTRACT

Analogues of [Dmt(1)]DALDA (H-Dmt-d-Arg-Phe-Lys-NH2; Dmt=2',6'-dimethyltyrosine), a potent µ opioid agonist peptide with mitochondria-targeted antioxidant activity, were prepared by replacing Phe(3) with various 2',6'-dialkylated Phe analogues, including 2',6'-dimethylphenylalanine (Dmp), 2',4',6'-trimethylphenylalanine (Tmp), 2'-isopropyl-6'-methylphenylalanine (Imp) and 2'-ethyl-6'-methylphenylalanine (Emp), or with the bulky amino acids 3'-(1-naphthyl)alanine (1-Nal), 3'-(2-naphthyl)alanine (2-Nal) or Trp. Several compounds showed significantly increased µ agonist potency, retained µ receptor selectivity and are of interest as drug candidates for neuropathic pain treatment. Surprisingly, the Dmp(3)-, Imp(3)-, Emp(3)- and 1-Nal(3)-containing analogues showed much increased κ receptor binding affinity and had mixed µ/κ properties. In these cases, molecular dynamics studies indicated conformational preorganization of the unbound peptide ligands due to rotational restriction around the C(ß)C(γ) bond of the Xxx(3) residue, in correlation with the observed κ receptor binding enhancement. Compounds with a mixed µ/κ opioid activity profile are known to have therapeutic potential for treatment of cocaine abuse.


Subject(s)
Oligopeptides/pharmacology , Receptors, Opioid, kappa/agonists , Receptors, Opioid, mu/agonists , Dose-Response Relationship, Drug , Models, Molecular , Molecular Conformation , Molecular Dynamics Simulation , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
16.
Bioorg Med Chem Lett ; 23(18): 5082-5, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23932788

ABSTRACT

Derivatives of peptides of the TIPP (Tyr-Tic-Phe-Phe; Tic=1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid) family containing a guanidino (Guan) function in place of the N-terminal amino group were synthesized in an effort to improve their blood-brain barrier permeability. Unexpectedly, N-terminal amidination significantly altered the in vitro opioid activity profiles. Guan-analogues of TIPP-related δ opioid antagonists showed δ partial agonist or mixed δ partial agonist/µ partial agonist activity. Guanidinylation of the mixed µ agonist/δ antagonists H-Dmt-Tic-Phe-Phe-NH2 (DIPP-NH2) and H-Dmt-TicΨ[CH2NH]Phe-Phe-NH2 (DIPP-NH2[Ψ]) converted them to mixed µ agonist/δ agonists. A docking study revealed distinct positioning of DIPP-NH2 and Guan-DIPP-NH2 in the δ receptor binding site. Lys(3)-analogues of DIPP-NH2 and DIPP-NH2[Ψ] (guanidinylated or non-guanidinylated) turned out to be mixed µ/κ agonists with δ antagonist-, δ partial agonist- or δ full agonist activity. Compounds with some of the observed mixed opioid activity profiles have therapeutic potential as analgesics with reduced side effects or for treatment of cocaine addiction.


Subject(s)
Guanidines/chemistry , Oligopeptides/pharmacology , Receptors, Opioid, delta/antagonists & inhibitors , Tetrahydroisoquinolines/pharmacology , Dose-Response Relationship, Drug , Models, Molecular , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Receptors, Opioid, delta/metabolism , Structure-Activity Relationship , Tetrahydroisoquinolines/chemical synthesis , Tetrahydroisoquinolines/chemistry
17.
J Med Chem ; 56(14): 5964-5973, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23822516

ABSTRACT

Two series of 22 and 15 atom cyclic enkephalins incorporating a diversely substituted guanidine bridge have been prepared to assess the potential effect of the bridge substitutions on their opioid activity profile. The most notable results were obtained with the shortest cyclic analogues, which showed a significant variation of their binding affinity toward µ and δ opioid receptors in relation to bridge substitution. NMR studies were performed to rationalize these data. Some small analogues were found to exist as at least one major and one minor stable forms, which could be separated by chromatography. In particular, the compounds 13 and 14 with a cyclic substituent were separated in three isomers and the basis of this multiplicity was explored by 2D NMR spectroscopy. All compounds were agonists with slight selectivity for the µ opioid receptor. Compounds 7a (thiourea bridge) and 10a (N-Me-guanidine bridge) showed nanomolar affinity toward µ receptor, the latter being the more selective for this receptor (40-fold).


Subject(s)
Enkephalins/chemical synthesis , Peptides, Cyclic/chemical synthesis , Receptors, Opioid, mu/agonists , Animals , Enkephalins/chemistry , Enkephalins/metabolism , Enkephalins/pharmacology , Guanidine , Humans , Magnetic Resonance Spectroscopy , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacology , Rats , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship , Thiourea
18.
J Med Chem ; 55(22): 9549-61, 2012 Nov 26.
Article in English | MEDLINE | ID: mdl-23102273

ABSTRACT

The influence of the side chain charges of the second and fourth amino acid residues in the peptidic µ opioid lead agonist Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1)]-DALDA) was examined. Additionally, to increase the overall lipophilicity of [Dmt(1)]-DALDA and to investigate the Phe(3) side chain flexibility, the final amide bond was N-methylated and Phe(3) was replaced by a constrained aminobenzazepine analogue. The in vitro receptor binding and activity of the peptides, as well as their in vivo transport (brain in- and efflux and tissue biodistribution) and antinociceptive properties after peripheral administration (ip and sc) in mice were determined. The structural modifications result in significant shifts of receptor binding, activity, and transport properties. Strikingly, while [Dmt(1)]-DALDA and its N-methyl analogue, Dmt-d-Arg-Phe-NMeLys-NH(2), showed a long-lasting antinociceptive effect (>7 h), the peptides with d-Cit(2) generate potent antinociception more rapidly (maximal effect at 1h postinjection) but also lose their analgesic activity faster when compared to [Dmt(1)]-DALDA and [Dmt(1),NMeLys(4)]-DALDA.


Subject(s)
Analgesics, Opioid/pharmacology , Nociception/drug effects , Oligopeptides/pharmacology , Pain Measurement/drug effects , Receptors, Opioid/metabolism , Animals , Blood-Brain Barrier , Brain/drug effects , Mice , Molecular Structure , Oligopeptides/chemistry , Oligopeptides/pharmacokinetics , Opioid Peptides/metabolism , Structure-Activity Relationship , Tissue Distribution
19.
Bioorg Med Chem Lett ; 22(5): 1899-902, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22325949

ABSTRACT

Analogues of the δ opioid antagonist peptide TIPP (H-Tyr-Tic-Phe-Phe-OH; Tic=1,2,3,4-tetrahydroisoquinoline3-carboxylic acid) containing various 4'-[N-(alkyl or aralkyl)carboxamido]phenylalanine analogues in place of Tyr(1) were synthesized. The compounds showed subnanomolar or low nanomolar δ opioid receptor binding affinity and various efficacy at the δ receptor (antagonism, partial agonism, full agonism) in the [(35)S]GTPγS binding assay. Two analogues, [1-Ncp(1)]TIPP (1-Ncp=4'-[N-(2-(naphthalene-1-yl)ethyl)carboxamido]phenylalanine) and [2-Ncp(1)]TIPP (2-Ncp=4'-[N-(2-(naphthalene-2-yl)ethyl)carboxamido]phenylalanine), were identified as potent and selective δ opioid agonists.


Subject(s)
Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Receptors, Opioid, delta/agonists , Receptors, Opioid, delta/metabolism , Tetrahydroisoquinolines/chemistry , Tetrahydroisoquinolines/pharmacology , Analgesics, Opioid/chemical synthesis , Animals , Guinea Pigs , HEK293 Cells , Humans , Inhibitory Concentration 50 , Mice , Oligopeptides/chemical synthesis , Receptors, Opioid, delta/antagonists & inhibitors , Tetrahydroisoquinolines/chemical synthesis
20.
Chem Biol Drug Des ; 79(2): 186-93, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22070627

ABSTRACT

On the basis of evidence that opioid compounds with a mixed µ agonist/δ antagonist profile may produce an antinociceptive effect with low propensity to induce side effects, bifunctional opioid peptides containing the µ agonist H-Dmt-d-Arg-Phe-Lys-NH(2) ([Dmt(1) ]DALDA; Dmt = 2',6'-dimethyltyrosine) connected tail-to-tail via various α,ω-diaminoalkyl- or diaminocyclohexane linkers to the δ antagonists H-Tyr-TicΨ[CH(2) -NH]Cha-Phe-OH (TICP[Ψ]; Cha = cyclohexylalanine, Tic = 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid), H-Dmt-Tic-OH or H-Bcp-Tic-OH (Bcp = 4'-[N-((4'-phenyl)phenethyl)carboxamido]phenylalanine) were synthesized and pharmacologically characterized in vitro. Bifunctional [Dmt(1) ]DALDA→NH-(CH(2) )(n) -NH←TICP[Ψ] compounds (n = -12) showed decreasing µ and δ receptor binding affinities with increasing linker length. As expected, several of the bifunctional peptides were µ agonist/δ antagonists with low nanomolar µ and δ receptor binding affinities. However, compounds with unexpected opioid activity profiles, including a µ partial agonist/δ partial agonist, µ antagonist/δ antagonists and µ agonist/δ agonists, were also identified. These results indicate that the binding affinities and intrinsic efficacies of these bifunctional compounds at both receptors depend on the length and type of the linker connecting the µ and δ components. An important recommendation emerging from this study is that the in vitro activity profiles of bifunctional compounds containing an agonist and an antagonist component connected via a linker need to be determined prior to their pharmacological evaluation in vivo.


Subject(s)
Opioid Peptides/chemistry , Receptors, Opioid, delta/chemistry , Receptors, Opioid, mu/chemistry , Amino Acid Sequence , Animals , Guinea Pigs , Ileum/drug effects , Male , Mice , Opioid Peptides/chemical synthesis , Opioid Peptides/pharmacology , Protein Binding/drug effects , Receptors, Opioid, delta/antagonists & inhibitors , Receptors, Opioid, delta/metabolism , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship , Vas Deferens/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...