Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Reprod Dev ; 75(4): 565-77, 2008 Apr.
Article in English | MEDLINE | ID: mdl-17886267

ABSTRACT

Hormone-sensitive lipase (HSL, Lipe, E.C.3.1.1.3) functions as a triglyceride and cholesteryl esterase, supplying fatty acids, and cholesterol to cells. Gene-targeted HSL-deficient (HSL(-/-)) mice reveal abnormal spermatids and are infertile at 24 weeks after birth. The purpose of this study was to follow the evolution of spermatid abnormalities as HSL(-/-) mice age, characterize sperm motility in older HSL(-/-) mice, and determine if mice expressing a human testicular HSL transgene (HSL(-/-)ttg) produce normal motile sperm. In situ hybridization indicated that HSL is expressed exclusively in steps 5-16 spermatids, but not in Sertoli cells. In HSL(-/-) mice, abnormalities were evident in step 16 spermatids at 5 weeks after birth, with defects progressively increasing in spermatids with age. The defects included multinucleation of spermatids, abnormal shapes and a reduction of elongating spermatids. In older HSL(-/-) mice, sperm counts appeared reduced by 42%, but this value was lower because samples were compromised by the presence of small degenerating germ cells in addition to sperm, both of which appeared of similar size and density. Sperm motility was dramatically reduced with only 11% classified as motile in HSL(-/-) mice compared to 76-78% of sperm in wild-type and HSL(-/-)ttg mice. Sperm morphology, counts, and motility were normal in HSL(-/-)ttg mice, as was their fertility. Collectively, the data indicate that HSL deficiency results in abnormal spermatid development with defects arising at 5 weeks of age and progressively increasing at later ages. HSL(-/-) mice also show a dramatic reduction in sperm counts and motility and are infertile.


Subject(s)
Infertility, Male/enzymology , Spermatozoa/pathology , Sterol Esterase/deficiency , Sterol Esterase/genetics , Testis/enzymology , Animals , Disease Progression , Infertility, Male/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Knockout , Sperm Count , Sperm Motility , Spermatids/pathology , Testis/pathology
2.
Endocrinology ; 145(12): 5688-93, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15345679

ABSTRACT

Hormone-sensitive lipase (HSL, Lipe, E.C.3.1.1.3) is a multifunctional fatty acyl esterase that is essential for male fertility and spermatogenesis and that also plays important roles in the function of adipocytes, pancreatic beta-cells, and adrenal cortical cells. Gene-targeted HSL-deficient (HSL-/-) male mice are infertile, have a 2-fold reduction in testicular mass, a 2-fold elevation of the ratio of esterified to free cholesterol in testis, and unique morphological abnormalities in round and elongating spermatids. Postmeiotic germ cells in the testis express a specific HSL isoform. We created transgenic mice expressing a normal human testicular HSL cDNA from the mouse protamine-1 promoter, which mediates expression specifically in postmeiotic germ cells. Testicular cholesteryl esterase activity was undetectable in HSL-/- mice, but in HSL-/- males expressing the testicular transgene, activity was 2-fold greater than normal. HSL transgene mRNA became detectable in testes between 19 and 25 days of age, coinciding with the first wave of postmeiotic transcription in round spermatids. In contrast to nontransgenic HSL-/- mice, HSL-/- males expressing the testicular transgene were normal with respect to fertility, testicular mass, testicular esterified/free cholesterol ratio, and testicular histology. Their cauda epididymides contained abundant, normal-appearing spermatozoa. We conclude that human testicular HSL is functional in mouse testis and that the mechanism of infertility in HSL-deficient males is cell autonomous and resides in postmeiotic germ cells, because HSL expression in these cells is in itself sufficient to restore normal fertility.


Subject(s)
Infertility, Male/physiopathology , Spermatids/physiology , Sterol Esterase/genetics , Animals , DNA, Complementary , Female , Humans , Male , Meiosis , Mice , Mice, Transgenic , Microinjections , Pregnancy , Promoter Regions, Genetic , Protamines/genetics , Spermatids/cytology , Sterol Esterase/deficiency , Testis/cytology , Testis/physiology , Transgenes/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...