Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(20)2021 Oct 19.
Article in English | MEDLINE | ID: mdl-34681960

ABSTRACT

Effects of Al content on the formation and the photoluminescence properties of CaAlSiN3:Eu2+ phosphor (CASIN) were investigated by a combustion synthesis method. XRD (X-ray diffraction), combined with PL (photoluminescence), TEM-EDS (transmission electron microscope equipped with an energy-dispersive X-ray spectroscope), and SAED (selected area electron diffraction) measurements, show that the bar-like CASIN gives a stronger emission than the plate-like and agglomerated fine particles. The emission intensity increases as the Al content increased from Al = 0.2 to Al = 0.8, which resulted from the extent of formation of CASIN increases. Then, the emission intensity decreases as the Al content is increased from Al = 0.8 to Al = 1.5, which resulted from the transformation of morphology of CASIN and a large amount formation of AlN. In addition, the extent of formation of CASIN increases with increasing Al from Al = 0.2 to Al = 1.2 and begins to decrease as Al is further increased to 1.5, and thus the peak emission wavelength increases from 647 nm to 658 nm as the Al molar ratio is increased from 0.2 to 1.2 and begins to decrease when further increasing the Al molar ratio to 1.5, which resulted from the large amount of AlN formed.


Subject(s)
Aluminum/metabolism , Calcium/chemistry , Carbazoles/chemistry , Europium/chemistry , Luminescence , Luminescent Agents/chemistry , Phosphorus/chemistry , Aluminum/analysis
2.
Molecules ; 21(5)2016 May 20.
Article in English | MEDLINE | ID: mdl-27213325

ABSTRACT

The thermal conductivity of epoxy resin composites filled with combustion-synthesized hexagonal boron nitride (h-BN) particles was investigated. The mixing of the composite constituents was carried out by either a dry method (involving no use of solvent) for low filler loadings or a solvent method (using acetone as solvent) for higher filler loadings. It was found that surface treatment of the h-BN particles using the silane 3-glycidoxypropyltrimethoxysilane (GPTMS) increases the thermal conductivity of the resultant composites in a lesser amount compared to the values reported by other studies. This was explained by the fact that the combustion synthesized h-BN particles contain less -OH or active sites on the surface, thus adsorbing less amounts of GPTMS. However, the thermal conductivity of the composites filled with the combustion synthesized h-BN was found to be comparable to that with commercially available h-BN reported in other studies. The thermal conductivity of the composites was found to be higher when larger h-BN particles were used. The thermal conductivity was also found to increase with increasing filler content to a maximum and then begin to decrease with further increases in this content. In addition to the effect of higher porosity at higher filler contents, more horizontally oriented h-BN particles formed at higher filler loadings (perhaps due to pressing during formation of the composites) were suggested to be a factor causing this decrease of the thermal conductivity. The measured thermal conductivities were compared to theoretical predictions based on the Nielsen and Lewis theory. The theoretical predictions were found to be lower than the experimental values at low filler contents (< 60 vol %) and became increasing higher than the experimental values at high filler contents (> 60 vol %).


Subject(s)
Boron Compounds/chemistry , Composite Resins/chemistry , Epoxy Resins/chemistry , Thermal Conductivity , Epoxy Compounds/chemistry , Silanes/chemistry
3.
Materials (Basel) ; 9(3)2016 Mar 08.
Article in English | MEDLINE | ID: mdl-28773303

ABSTRACT

Effects of Ca content (in the reactant mixture) on the formation and the photoluminescence properties of CaAlSiN3:Eu2+ phosphor (CASIN) were investigated by a combustion synthesis method. Ca, Al, Si, Eu2O3, NaN3, NH4Cl and Si3N4 powders were used as the starting materials and they were mixed and pressed into a compact which was then wrapped up with an igniting agent (i.e., Mg + Fe3O4). The compact was ignited by electrical heating under a N2 pressure of ≤1.0 MPa. By keeping the molar ratios of Al and Si (including the Si powder and the Si in Si3N4 powder) both at 1.00 and that of Eu2O3 at 0.02, XRD (X-ray diffraction) coupled with TEM-EDS (transmission electron microscope equipped with an energy-dispersive X-ray spectroscope) and SAED (selected area electron diffraction) measurements show that AlN:Eu2+ and Ca-α-SiAlON:Eu2+ are formed as the major phosphor products when the Ca molar ratio (denoted by Y) is equal to 0.25 and AlN:Eu2+ and Ca-α-SiAlON:Eu2+ could not be detected at Y ≥ 0.75 and ≥1.00, respectively. CASIN (i.e., CaAlSiN3:Eu2+) becomes the only phosphor product as Y is increased to 1.00 and higher. The extent of formation of CASIN increases with increasing Y up to 1.50 and begins to decrease as Y is further increased to 1.68. While the excitation wavelength regions are similar at various Y, the emission wavelength regions vary significantly as Y is increased from 0.25 to 1.00 due to different combinations of phosphor phases formed at different Y. The emission intensity of CASIN was found to vary with Y in a similar trend to its extent of formation. The Ca and Eu contents (expressed as molar ratios) in the synthesized products were found to increase roughly with increasing Y but were both lower than the respective Ca and Eu contents in the reactant mixtures.

4.
Materials (Basel) ; 7(12): 7828-7842, 2014 Dec 05.
Article in English | MEDLINE | ID: mdl-28788278

ABSTRACT

A combustion synthesis method has been developed for synthesis of Eu2+ doped CaAlSiN3 phosphor and its photoluminescence properties were investigated. Ca, Al, Si, and Eu2O3 powders were used as the Ca, Al, Si and Eu sources. The addition of NaN3, NH4Cl and Si3N4 powders was found to increase significantly the product yield. These powders were mixed and pressed into a compact, which was then wrapped up with an igniting agent (i.e., Mg+Fe3O4). The compact was ignited by electrical heating under a N2 pressure of ≤1.0 MPa. Effects of these experimental parameters on the product yield were investigated and a reaction mechanism was proposed. The synthesized CaAlSiN3:Eu2+ phosphor absorbs light in the region of 200-600 nm and shows a broad band emission in the region of 500-800 nm due to the 4f65d¹ → 4f7 transition of Eu2+. The sample doped with Eu2+ at the optimized molar ratio of 0.04 is efficiently excited by the blue light (460 nm) and generates emission peaking at ~650 nm with peak emission intensity ~106% of a commercially available phosphor, YAG:Ce3+(P46-Y3).The internal quantum efficiency of the synthesized phosphor was measured to be 71%, compared to 69% of the YAG:Ce3+ (P46-Y3).

SELECTION OF CITATIONS
SEARCH DETAIL
...