Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Anim Sci Technol ; 66(1): 31-56, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38618025

ABSTRACT

Pig farming, a vital industry, necessitates proactive measures for early disease detection and crush symptom monitoring to ensure optimum pig health and safety. This review explores advanced thermal sensing technologies and computer vision-based thermal imaging techniques employed for pig disease and piglet crush symptom monitoring on pig farms. Infrared thermography (IRT) is a non-invasive and efficient technology for measuring pig body temperature, providing advantages such as non-destructive, long-distance, and high-sensitivity measurements. Unlike traditional methods, IRT offers a quick and labor-saving approach to acquiring physiological data impacted by environmental temperature, crucial for understanding pig body physiology and metabolism. IRT aids in early disease detection, respiratory health monitoring, and evaluating vaccination effectiveness. Challenges include body surface emissivity variations affecting measurement accuracy. Thermal imaging and deep learning algorithms are used for pig behavior recognition, with the dorsal plane effective for stress detection. Remote health monitoring through thermal imaging, deep learning, and wearable devices facilitates non-invasive assessment of pig health, minimizing medication use. Integration of advanced sensors, thermal imaging, and deep learning shows potential for disease detection and improvement in pig farming, but challenges and ethical considerations must be addressed for successful implementation. This review summarizes the state-of-the-art technologies used in the pig farming industry, including computer vision algorithms such as object detection, image segmentation, and deep learning techniques. It also discusses the benefits and limitations of IRT technology, providing an overview of the current research field. This study provides valuable insights for researchers and farmers regarding IRT application in pig production, highlighting notable approaches and the latest research findings in this field.

2.
Sensors (Basel) ; 23(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38139590

ABSTRACT

Site-specific measurements of the crop yield during harvesting are essential for successfully implementing precision management techniques. This study aimed to estimate the mass of radish tubers using the impact principle under simulated vibration and sloped-field harvesting conditions with a laboratory test bench. These conditions included the conveyor speed (CS), impact plate layout (IP), falling height onto the impact plate (FH), the plate angle relative to the horizontal (PH), the field slope, and the vibration of the harvesting machine. Two layouts of impact-type sensors were fabricated and tested, one with a single load cell (SL) and the other with two load cells (DL). An adjustable slope platform and a vibration table equipped with vibration blades were utilized to simulate the slope and vibration effects, respectively. Calibrations were conducted to verify the accuracy of the sensor outputs, processed with the finite impulse response and moving average filters. Radish mass was estimated using an asymmetrically trimmed mean method. The relative percentage error (RE), standard error (SE), coefficient of determination (R²), and analysis of variance (ANOVA) were used to assess the impact plate performance. The results indicated that the SE for both impact plates was less than 4 g in the absence of vibration and slope conditions. The R2 for the single and double impact plates ranged from 0.58 to 0.89 and 0.69 to 0.81, respectively. The FH had no significant impact, while the PH significantly affected the mass measurements for both impact plates. On the other hand, the CS significantly affected the plate performance, except for the double-load-cell impact plate. Both vibration and slope affected the mass measurements, with RE values of 9.89% and 13.92%, respectively. The RE for filtered radish signals was reduced from 9.13% to 5.42%. The tests demonstrated the feasibility of utilizing the impact principle to assess the mass of radishes, opening up possibilities for the development of yield-monitoring systems for crops harvested in a similar manner.


Subject(s)
Raphanus , Vibration , Physical Therapy Modalities , Bone Plates
4.
Heliyon ; 8(12): e12031, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36531634

ABSTRACT

Centella asiatica (C. asiatica) has reported to be one of the traditional herbal remedies, whereas poor water solubility leads to lower bioavailability thereby affecting it remedial efficacy. Therefore, we aimed to evaluate its efficacy through increased bioavailability by using high viscosity Carboxymethyl Cellulose (CMC) as solvent on methanol-based extract on wound healing, in vivo. The preparation was applied as 0.0% (control, CMC alone), 0.25. 0.5 and 1% concentrations of extract of C. asiatica. We evaluated the efficiency of preparations on wound healing progression as progression of wound contraction, tissue proliferation and cells deposition, and relative level of gene expression for genes associated with wound healing. The results showed that 0.5% extract in CMC had significantly higher (P < 0.05) wound contraction than control and other concentrations. The level tissue deposition and the infiltration of polymorphonuclear cells in groups treated with 0.5 % concentration preparation were higher than that other treatments and control. Similarly, the relative level of gene expression in 0.5% concentration treated group were statistically significantly higher (P < 0.05) than that of control. It is believed that the lower concentration of the extract would have lessor effect on wound healing, whereas higher concertation would be interfering the optimal inflammatory tissue deposition; and there by negatively affecting wound healing. The results indicated that C. asiatica can be optimally used at 0.5 % of extract in CMC for wound healing as indicated by speeding the progression of wound closure and by increasing the expression of collagen II and III together with reducing the expression of TGFß1. However, higher concentrations of the crude extract of C. asiatica could paradoxically resulting in undesired effects. It is recommended that further evaluation should be performed on wider scale and the economic feasibility evaluation should be performed.

5.
Foods ; 10(7)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34359392

ABSTRACT

The growth of plants and their glucosinolate content largely depend on the cultivation environment; however, there are limited reports on the optimization of ambient environmental factors for kale grown in plant factories. This study was conducted to investigate the effects of temperature, relative humidity, and the carbon dioxide (CO2) concentration on kale growth and glucosinolate content in different growth stages of cultivation in a plant factory. Kale was grown under different temperatures (14, 17, 20, 23, and 26 °C), relative humidities (45, 55, 65, 75, and 85%), and CO2 concentrations (400, 700, 1000, 1300, and 1600 ppm) in a plant factory. Two and four weeks after transplantation, leaf samples were collected to evaluate the physical growth and glucosinolate contents. The statistical significance of the treatment effects was determined by two-way analysis of variance, and Duncan's multiple range test was used to compare the means. A correlation matrix was constructed to show possible linear trends among the dependent variables. The observed optimal temperature, relative humidity, and CO2 range for growth (20-23 °C, 85%, and 700-1000 ppm) and total glucosinolate content (14-17 °C, 55-75%, and 1300-1600 ppm) were different. Furthermore, the glucosinolate content in kale decreased with the increase of temperature and relative humidity levels, and increased with the increase of CO2 concentration. Most of the physical growth variables showed strong positive correlations with each other but negative correlations with glucosinolate components. The findings of this study could be used by growers to maintain optimum environmental conditions for the better growth and production of glucosinolate-rich kale leaves in protected cultivation facilities.

6.
Plants (Basel) ; 10(5)2021 May 08.
Article in English | MEDLINE | ID: mdl-34066714

ABSTRACT

Light emitting diodes (LEDs) have recently been considered an efficient artificial light source in plant factories for enhancing plant growth and nutritional quality. Accordingly, this study aimed to review blue, red, and white LED light sources for efficiency and length of the growing period to produce seedlings of Scutellaria baicalensis with high nutritional value. The roots, stems, and leaves of S. baicalensis seedlings were grown under different LED lights and harvested after two and four weeks, and analyzed using high-performance liquid chromatography and gas chromatography time-of-flight mass spectrometry to identify and quantify primary and secondary metabolites. Roots, particularly in the seedlings treated with white LEDs were determined to contain the greatest concentrations of the representative compounds present in S. baicalensis: baicalin, baicalein, and wogonin, which show highly strong biological properties compared to the other plant organs. A total of 50 metabolites (amino acids, sugars, sugar alcohols, organic acids, phenolic acids, and amines) were detected in the roots, stems, and leaves of S. baicalensis seedlings, and the concentrations of primary and secondary metabolites were generally decreased with the increasing duration of LED illumination. Therefore, this study suggests that white LED light and a 2-week growing period are the most efficient conditions for the production of baicalin, baicalein, and wogonin.

7.
J Sci Food Agric ; 99(2): 711-718, 2019 Jan 30.
Article in English | MEDLINE | ID: mdl-29971800

ABSTRACT

BACKGROUND: In recent years, protected crop production using plant factories to produce high-value crops with greater functional components has become more popular in many countries. The quantification of the components, however, is mainly conducted by laboratory analyses, which are both time- and labor-consuming. The present study aimed to investigate the potential of a non-destructive diffuse reflectance spectroscopy technique for estimating functional components (i.e. glucosinolates, amino acids, sugars and carotenoids) in the leaves of Chinese cabbage grown in a plant factory. RESULTS: From the overall analysis, better estimations were obtained using the partial least square regression procedure. The important wavelengths for each functional component were identified mainly in the ultraviolet-visible regions. Identified wavelengths were 317, 390, 888 and 940 nm for sugars; 520 and 960 nm for amino acids; 385, 860 and 945 nm for glucosinolates; and 454, 472 and 530 nm for carotenoids. CONCLUSION: Optical reflectance spectroscopy shows potential as a tool for the estimation of functional components in the leaves of Chinese cabbage. The results of the present study provide useful information for the design and application of sensors with respect to on-site quantification of the functional components. © 2018 Society of Chemical Industry.


Subject(s)
Brassica/chemistry , Plant Extracts/chemistry , Plant Leaves/chemistry , Spectrum Analysis/methods , Carotenoids/chemistry , Glucosinolates/chemistry
8.
J Sci Food Agric ; 98(9): 3580-3587, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29315681

ABSTRACT

BACKGROUND: Glucosinolate in Chinese cabbage (Brassica campestris L. ssp. pekinensis (Lour.) Rupr) has potential benefits for human health, and its content is affected by growth conditions. In this study, we used a statistical model to identify the relationship between glucosinolate content and growth conditions, and to predict glucosinolate content in Chinese cabbage. RESULT: Multiple regression analysis was employed to develop the model's growth condition parameters of growing period, temperature, humidity and glucosinolate content measured in Chinese cabbage grown in a plant factory. The developed model was represented by a second-order multi-polynomial equation with two independent parameters: growth duration and temperature (adjusted R2 = 0.81), and accurately predicted glucosinolate content after 14 days of seeding. CONCLUSION: To our knowledge, this study presents the first statistical model for evaluating glucosinolate content, suggesting a useful methodology for designing glucosinolate-related experiments, and optimizing glucosinolate content in Chinese cabbage cultivation. © 2018 Society of Chemical Industry.


Subject(s)
Agriculture/methods , Brassica/chemistry , Brassica/growth & development , Glucosinolates/analysis , Models, Statistical , Food Quality , Regression Analysis
11.
Braz. arch. biol. technol ; 59: e16150546, 2016. tab, graf
Article in English | LILACS | ID: biblio-951365

ABSTRACT

Light emitting diode (LED) lights play an important role in the plant physiology and alter the metabolites in a significant manner. Glucosinolates (GSLs), polyphenols, flavonoids and antioxidant properties of Chinese cabbage and kale cultivated in varying LED lights were investigated. Analysis revealed 7 aliphatic, 3 indolyl and 1 aromatic GSLs in Chinese cabbage and kale. The total GSL content ranged from 1.5-19.08 and 1.85-24.87 µmol/g DW, and glucobrassicanapin was the predominant GSL (3) in Chinese cabbage, whereas; sinigrin (3.49 µmol/g DW) was in kale. Blue and red LED lights produced significantly higher amount of GSLs in Chinese cabbage and kale respectively. Results revealed higher amount of total polyphenol (3.845 µg/mL) and total flavanoids (3.939 μg/mL) in Chinese cabbage. Chinese cabbage and kale showed significant antioxidant activities when compare with positive control, and the antioxidant assays were slightly correlated with total GSLs, polyphenols and flavanoids contents. The influence of LED lights on glucobrassicin in Chinese cabbage and kale should be studied extensively, because GSL is the precursor of indole-3-carbinol, a potent anticancer isothiocyanate.

13.
Molecules ; 20(6): 11090-102, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26083041

ABSTRACT

The flowers of twenty-three cultivars of Dendranthema grandiflorum Ramat. were investigated to determine anthocyanin and carotenoid levels and to confirm the effects of the pigments on the flower colors using high-performance liquid chromatography (HPLC) and electrospray ionization-mass spectrometry (ESI-MS). The cultivars contained the anthocyanins cyanidin 3-glucoside (C3g) and cyanidin 3-(3"-malonoyl) glucoside (C3mg) and the following carotenoids: lutein, zeaxanthin, ß-cryptoxanthin, 13-cis-ß-carotene, α-carotene, trans-ß-carotene, and 9-cis-ß-carotene. The cultivar "Magic" showed the greatest accumulation of total and individual anthocyanins, including C3g and C3gm. On the other hand, the highest level of lutein and zeaxanthin was noted in the cultivar "Il Weol". The cultivar "Anastasia" contained the highest amount of carotenoids such as trans-ß-carotene, 9-cis-ß-carotene, and 13-cis-ß-carotene. The highest accumulation of ß-cryptoxanthin and α-carotene was noted in the cultivar "Anastasia" and "Il Weol". Our results suggested that 'Magic", "Angel" and "Relance' had high amounts of anthocyanins and showed a wide range of red and purple colors in their petals, whereas "Il Weol', "Popcorn Ball' and "Anastasia" produced higher carotenoid contents and displayed yellow or green petal colors. Interestingly, "Green Pang Pang", which contained a high level of anthocyanins and a medium level of carotenoids, showed the deep green colored petals. "Kastelli", had high level of carotenoids as well as a medium level of anthocyanins and showed orange and red colored petals. It was concluded that each pigment is responsible for the petal's colors and the compositions of the pigments affect their flower colors and that the cultivars could be a good source for pharmaceutical, floriculture, and pigment industries.


Subject(s)
Anthocyanins/chemistry , Carotenoids/chemistry , Chrysanthemum/chemistry , Flowers/chemistry , Chromatography, High Pressure Liquid , Phenotype
14.
J Agric Food Chem ; 62(21): 4839-45, 2014 May 28.
Article in English | MEDLINE | ID: mdl-24793050

ABSTRACT

Buckwheat sprouts are a popular food item in many countries. The effects of light-emitting diodes (LEDs) on sprout growth and development, changes in mRNA transcription, and accumulation of phenylpropanoid compounds were studied in tartary buckwheat 'Hokkai T8' sprouts. The highest transcript levels were observed after 2 days of LED exposure for all genes, especially FtPAL and FtF3'H, which showed higher expression in sprouts grown under blue and white light than in those grown under red light. Catechin content in sprouts grown under red light increased dramatically throughout the 10 day time course. Maximum rutin content (43.37 mg/g dry weight (DW)) was observed in sprouts at 4 days after exposure (DAE) to blue light. Similarly, the highest cyanidin 3-O-rutinoside content (0.85 mg/g DW) was detected at 10 DAE to blue light. On the basis of these results, blue LED light is recommended as a light source for enhancing the content of phenolic compounds in tartary buckwheat sprouts.


Subject(s)
Fagopyrum/genetics , Fagopyrum/radiation effects , Flavonoids/biosynthesis , Gene Expression Regulation, Plant/radiation effects , Plant Proteins/genetics , Biosynthetic Pathways/radiation effects , Fagopyrum/growth & development , Fagopyrum/metabolism , Food, Organic/analysis , Light , Plant Proteins/metabolism , Seeds/genetics , Seeds/growth & development , Seeds/metabolism , Seeds/radiation effects
15.
World J Microbiol Biotechnol ; 30(3): 887-92, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24162949

ABSTRACT

Baicalin, baicalein, and wogonin were accumulated in hairy roots derived from Scutellaria lateriflora and Scutellaria baicalensis. The levels of baicalein and baicalin were 6.8 and 5.0 times higher, respectively, in S. baicalensis than in S. lateriflora. A total of 47 metabolites were detected and identified in Scutellaria species by GC-TOF MS. The metabolites from the two species were subjected to principal component analysis (PCA) to evaluate differences. PCA fully distinguished between the two species. The results showed that individual phenolic acids and phenylalanine, precursors for the phenylpropanoid biosynthetic pathway, were higher in S. baicalensis than in S. lateriflora. This GC-TOF MS-based metabolic profiling approach was a viable alternative method to differentiate metabolic profiles between species.


Subject(s)
Flavonoids/analysis , Plant Roots/chemistry , Scutellaria/chemistry , Gas Chromatography-Mass Spectrometry
16.
J Agric Food Chem ; 61(50): 12356-61, 2013 Dec 18.
Article in English | MEDLINE | ID: mdl-24274859

ABSTRACT

In this study, the optimum wavelengths of light required for carotenoid biosynthesis were determined by investigating the expression levels of carotenoid biosynthetic genes and carotenoid accumulation in sprouts of tartary buckwheat (Fagopyrum tataricum Gaertn.) exposed to white, blue, and red light-emitting diodes (LEDs). Most carotenoid biosynthetic genes showed higher expression in sprouts irradiated with white light at 8 days after sowing than in those irradiated with blue and red lights. The dominant carotenoids in tartary buckwheat sprouts were lutein and ß-carotene. The richest accumulation of total carotenoids was observed in sprouts grown under white light (1282.63 µg g(-1) dry weight), which was relatively higher than that in sprouts grown under blue and red lights (940.86 and 985.54 µg g(-1), respectively). This study might establish an effective strategy for maximizing the production of carotenoids and other important secondary metabolites in tartary buckwheat sprouts by using LED technology.


Subject(s)
Carotenoids/biosynthesis , Fagopyrum/radiation effects , Plant Proteins/genetics , Biosynthetic Pathways/drug effects , Fagopyrum/genetics , Fagopyrum/growth & development , Fagopyrum/metabolism , Gene Expression Regulation, Plant/drug effects , Light , Plant Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...