Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 17227, 2017 12 08.
Article in English | MEDLINE | ID: mdl-29222503

ABSTRACT

Both steelmaking via an electric arc furnace and manufacturing of portland cement are energy-intensive and resource-exploiting processes, with great amounts of carbon dioxide (CO2) emission and alkaline solid waste generation. In fact, most CO2 capture and storage technologies are currently too expensive to be widely applied in industries. Moreover, proper stabilization prior to utilization of electric arc furnace slag are still challenging due to its high alkalinity, heavy metal leaching potentials and volume instability. Here we deploy an integrated approach to mineralizing flue gas CO2 using electric arc furnace slag while utilizing the reacted product as supplementary cementitious materials to establish a waste-to-resource supply chain toward a circular economy. We found that the flue gas CO2 was rapidly mineralized into calcite precipitates using electric arc furnace slag. The carbonated slag can be successfully utilized as green construction materials in blended cement mortar. By this modulus, the global CO2 reduction potential using iron and steel slags was estimated to be ~138 million tons per year.

2.
Biomaterials ; 58: 103-11, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25941787

ABSTRACT

Given the rise of antibiotic resistant microbes, genetic vaccination is a promising prophylactic strategy that enables rapid design and manufacture. Facilitating this process is the choice of vector, which is often situationally-specific and limited in engineering capacity. Furthermore, these shortcomings are usually tied to an incomplete understanding of the structure-function relationships driving vector-mediated gene delivery. Building upon our initial report of a hybrid bacterial-biomaterial gene delivery vector, a comprehensive structure-function assessment was completed using a class of mannosylated poly(beta-amino esters). Through a top-down screening methodology, an ideal polymer was selected on the basis of gene delivery efficacy and then used for the synthesis of a stratified molecular weight polymer library. By eliminating contributions of polymer chemical background, we were able to complete an in-depth assessment of gene delivery as a function of (1) polymer molecular weight, (2) relative mannose content, (3) polymer-membrane biophysical properties, (4) APC uptake specificity, and (5) serum inhibition. In summary, the flexibility and potential of the hybrid design featured in this work highlights the ability to systematically probe vector-associated properties for the development of translational gene delivery candidates.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Mannose/chemistry , Animals , Antigen-Presenting Cells , Biocompatible Materials/chemistry , Biophysics , Escherichia coli/metabolism , Esters , Genetic Therapy , Magnetic Resonance Spectroscopy , Mice , Molecular Weight , Polymers/chemistry , Transfection
3.
Mol Pharm ; 12(5): 1691-700, 2015 May 04.
Article in English | MEDLINE | ID: mdl-25849744

ABSTRACT

Bactofection offers a gene delivery option particularly useful in the context of immune modulation. The bacterial host naturally attracts recognition and cellular uptake by antigen presenting cells (APCs) as the initial step in triggering an immune response. Moreover, depending on the bacterial vector, molecular biology tools are available to influence and/or overcome additional steps and barriers to effective antigen presentation. In this work, molecular engineering was applied using Escherichia coli as a bactofection vector. In particular, the bacteriophage ΦX174 lysis E (LyE) gene was designed for variable expression across strains containing different levels of lysteriolysin O (LLO). The objective was to generate a bacterial vector with improved attenuation and delivery characteristics. The resulting strains exhibited enhanced gene and protein release and inducible cellular death. In addition, the new vectors demonstrated improved gene delivery and cytotoxicity profiles to RAW264.7 macrophage APCs.


Subject(s)
Bacteriophages/metabolism , Escherichia coli/genetics , Animals , Cell Line , Genetic Therapy , Genetic Vectors/genetics , Mice
4.
Mol Pharm ; 12(3): 846-56, 2015 Mar 02.
Article in English | MEDLINE | ID: mdl-25625426

ABSTRACT

Genetic vaccination is predicated on the underlying principle that diseases can be prevented by the controlled introduction of genetic material encoding antigenic proteins from pathogenic organisms to elicit the formation of protective immune responses. Driving this process is the choice of carrier that is responsible for navigating the obstacles associated with gene delivery. In this work, we expand upon a novel class of hybrid biosynthetic gene delivery vectors that are composed of a biomaterial outer coating and a bacterial (Escherichia coli) inner core. Specifically, a series of newly developed biodegradable cationic polylactides (CPLAs) and their PEGylated variants were selected to investigate the role of low polydispersity index (PDI), charge density, and PEGylation upon hybrid vector assembly and gene delivery efficacy. Upon assembly, hybrid vectors mediated increased gene delivery beyond that of the individual bacterial vector in isolation, including assays with increasing medium protein content to highlight shielding properties afforded by the PEG-functionalized CPLA component. Furthermore, after extensive characterization of surface deposition of the polymer, results prompted a new model for describing hybrid vector assembly that includes cellular coating and penetration of the CPLA component. In summary, these results provide new options and insight toward the assembly and application of next-generation hybrid biosynthetic gene delivery vectors.


Subject(s)
Gene Transfer Techniques , Genetic Vectors , Polyesters/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Biocompatible Materials/toxicity , Cations/chemical synthesis , Cations/chemistry , Cell Line , Gene Transfer Techniques/adverse effects , Genetic Engineering , Magnetic Resonance Spectroscopy , Materials Testing , Mice , Models, Chemical , Polyesters/chemical synthesis , Polyethylene Glycols/chemical synthesis , Polyethylene Glycols/chemistry , Transfection , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...