Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(7)2022 Mar 22.
Article in English | MEDLINE | ID: mdl-35407684

ABSTRACT

Traditional fatigue fracture theory and practice focus principally on structural design. It is thus too conservative and inappropriate when used to predict the high-cycle fatigue life of dies used for metal forming, especially cold forging. We propose a novel mean stress correction model and diagram to predict the high-cycle fatigue lives of cold forging dies, which focuses on the upper part of the equivalent fatigue strength curve. Considering the features of die materials characterized by high yield strength and low ductility, a straight line is assumed for the tensile yield line. To the contrary, a general curve is used to represent the fatigue strength. They are interpolated, based on the distance ratio, when finding an appropriate equivalent fatigue strength curve at the mean stress and stress amplitude between the line and curve. The approach is applied to a well-defined literature example to verify its validity and shed light on the characteristics of die fatigue life. The approach is also applied to practical forging and useful qualitative results are obtained.

2.
Materials (Basel) ; 14(17)2021 Aug 27.
Article in English | MEDLINE | ID: mdl-34500966

ABSTRACT

We develop a new flow model based on the Swift method, which is both versatile and accurate when used to describe flow stress in terms of strain hardening and damage softening. A practical issue associated with flow stress at room temperature is discussed in terms of tensile testing of a cylindrical specimen; we deal with both material identification and finite element predictions. The flow model has four major components, namely the stress before, at, and after the necking point and around fracture point. The Swift model has the drawback that not all major points of stress can be covered simultaneously. A term of strain to the third or fourth power (the "second strain hardening exponent"), multiplied and thus controlled by a second strain hardening parameter, can be neglected at small strains. Any effect of the second strain hardening exponent on the identification of the necking point is thus negligible. We use this term to enhance the flexibility and accuracy of our new flow model, which naturally couples flow stress with damage using the same hardening constant as a function of damage. The hardening constant becomes negative when damage exceeds a critical value that causes a drastic drop in flow stress.

3.
Materials (Basel) ; 14(7)2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33805188

ABSTRACT

The traditional theory of ductile fracture has limitations for predicting crack generation during a cold shell nosing process. Various damage criteria are employed to explain fracture and failure in the nose part of a cold shell. In this study, differences in microstructure among fractured materials and analysis of their surfaces indicated the occurrence of brittle fractures. The degree of "plastic deformation-induced embrittlement" (PDIE) of plastically deformable materials affects the likelihood of brittle fractures; PDIE can also decrease the strength in tension due to the Bauschinger effect. Two indicators of brittle fracture are presented, i.e., the critical value of PDIE and the allowable tensile strength (which in turn depends on the degree of PDIE or embrittlement-effective strain). When the maximum principal stress is greater than the latter and the PDIE is greater than the former, our method determines the likelihood of brittle fracture. This approach was applied to an actual cold shell nosing process, and the predictions were in good quantitative agreement with the experimental results.

4.
Materials (Basel) ; 13(22)2020 Nov 23.
Article in English | MEDLINE | ID: mdl-33238527

ABSTRACT

SUS304 stainless steel is characterized by combined tensile and compression testing, with an emphasis on flow stress at higher strain and temperature. The plastic deformation behavior of SUS304 from room temperature to 400 °C is examined and a general approach is used to express flow stress as a closed-form function of strain, strain rate, and temperature; this is optimal when the strain is high, especially during automatic multi-stage cold forging. The fitted flow stress is subjected to elastothermoviscoplastic finite element analysis (FEA) of an automatic multi-stage cold forging process for an SUS304 ball-stud. The importance of the thermal effect during cold forging, in terms of high material strength and good strain-hardening, is revealed by comparing the forming load, die wear and die stress predictions of non-isothermal and isothermal FEAs. The experiments have shown that the predictions of isothermal FEA are not feasible because of the high predicted effective stress on the weakest part of the die.

5.
Materials (Basel) ; 13(21)2020 Oct 22.
Article in English | MEDLINE | ID: mdl-33105844

ABSTRACT

Incremental sheet metal forming can manufacture various sheet metal products without a dedicated punch and die set. In this study, we developed a two-stage incremental forming process to decrease shape errors in the conventional incremental forming process. The forming process was classified into the first single point incremental forming (1st SPIF) process for forming a product and the counter single point incremental forming (counter SPIF) process to decrease shape error. The counter SPIF gives bending deformation in the opposite direction. Furthermore, the counter SPIF compensates for shape errors, such as section deflection, skirt spring-back, final forming height, and round. The tool path of the counter SPIF has been optimized through a relatively simple optimization method by modifying the tool path of the previous step. The tool path of the 1st SPIF depends on the geometry of the product. An experiment was performed to form a circular cup shape to verify the proposed tool path of the 1st and counter SPIF. The result confirmed that the shape error decreased when compared to the conventional SPIF. For the application, the ship-hull geometry was adopted. Experimental results demonstrated the feasibility of the two-stage incremental forming process.

SELECTION OF CITATIONS
SEARCH DETAIL
...