Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 9(41): 15998-16004, 2017 Oct 26.
Article in English | MEDLINE | ID: mdl-29022639

ABSTRACT

Glucose oxidase (GOx) and polyacrylic acid (PAA) based water swellable non-toxic enzyme-polymer conjugate (PAA-GOx) was immobilized on a substrate consisting of graphene oxide (GO) and polyethyleneimine (PEI) (GO-PEI) and the electrochemical performances of the new catalyst were investigated. According to the measurements, although the amount of GOx immobilized on PAA-GOx was lower than that on glutaraldehyde (GA)-GOx, which is a conventionally used conjugate, its catalytic activity was 9.6 times higher than that of GA-GOx. The superior catalytic activity (102.0 µA cm-2, 20 mM of glucose) and glucose sensitivity (6.9 µA cm-2 mM-1) were due to its high swellability in water. Due to this, the PAA-GOx absorbs a large amount of aqueous glucose molecules and rapidly transfers them to the active site of GOx. Desirable hydrogen peroxide and glucose oxidation reactions are accordingly promoted. In addition, since PAA has abundant free carboxylic acid groups, the PAA-GOx forms covalent bonds with the GO-PEI to curtail the leaching-out of GOx molecules.


Subject(s)
Acrylic Resins/chemistry , Biosensing Techniques , Enzymes, Immobilized/metabolism , Glucose Oxidase/metabolism , Glucose/analysis , Catalytic Domain , Polymers , Water
2.
Nanoscale ; 9(5): 1993-2002, 2017 Feb 02.
Article in English | MEDLINE | ID: mdl-28106225

ABSTRACT

Glucose oxidase (GOx)-catalase co-immobilized catalyst (CNT/PEI/(GOx-Cat)) was synthesized, and its catalytic activity and electrical performance were investigated and compared, whereas the amount of immobilized catalase was optochemically inspected by chemiluminescence (CL) assay. With the characterizations, it was confirmed that the catalase was well immobilized on the CNT/PEI surface, whereas both the GOx and catalase play their roles well in the catalyst. According to the measurements of the current density peak of the flavin adenine dinucleotide (FAD) redox reaction, electron transfer rate, Michaelis-Menten constants and sensitivity, CNT/PEI/(GOx-Cat) shows the best values, and this is attributed to the excellent catalytic activity of GOx and the H2O2 decomposition capability of the catalase. To evaluate the electrical performance, a membraneless glucose biofuel cell (GBFC) adopting the catalyst was operated under physiological conditions and produced a maximum power density (MPD) of 180.8 ± 22.3 µW cm-2, which is the highest value compared to MPDs obtained by adoption of other catalysts. With such results, it was clarified that the CNT/PEI/(GOx-Cat) manufactured by co-immobilization of GOx and catalase leads to enhancements in the catalytic activity and GBFC performance due to the synergetic effects of (i) effective removal of harmful H2O2 moiety by catalase and (ii) superior activation of desirable reactions by GOx.


Subject(s)
Bioelectric Energy Sources , Catalase/chemistry , Enzymes, Immobilized/chemistry , Glucose Oxidase/chemistry , Electrodes , Glucose , Hydrogen Peroxide , Nanotubes, Carbon
3.
Nanoscale ; 8(17): 9201-10, 2016 Apr 28.
Article in English | MEDLINE | ID: mdl-27074999

ABSTRACT

New enzymatic catalysts prepared using physical entrapment and chemical bonding were used as anodic catalysts to enhance the performance of enzymatic biofuel cells (EBCs). For estimating the physical entrapment effect, the best glucose oxidase (GOx) concentration immobilized on polyethyleneimine (PEI) and carbon nanotube (CNT) (GOx/PEI/CNT) was determined, while for inspecting the chemical bonding effect, terephthalaldehyde (TPA) and glutaraldehyde (GA) crosslinkers were employed. According to the enzyme activity and XPS measurements, when the GOx concentration is 4 mg mL(-1), they are most effectively immobilized (via the physical entrapment effect) and TPA-crosslinked GOx/PEI/CNT(TPA/[GOx/PEI/CNT]) forms π conjugated bonds via chemical bonding, inducing the promotion of electron transfer by delocalization of electrons. Due to the optimized GOx concentration and π conjugated bonds, TPA/[GOx/PEI/CNT], including 4 mg mL(-1) GOx displays a high electron transfer rate, followed by excellent catalytic activity and EBC performance.


Subject(s)
Bioelectric Energy Sources , Glucose Oxidase/chemistry , Biosensing Techniques , Catalysis , Electrodes , Enzymes, Immobilized/chemistry , Nanotubes, Carbon
4.
Nanoscale ; 8(2): 1161-8, 2016 Jan 14.
Article in English | MEDLINE | ID: mdl-26667493

ABSTRACT

A model explaining the π-conjugated electron pathway effect induced by a novel cross-linker adopted enzyme catalyst is suggested and the performance and stability of an enzymatic biofuel cell (EBC) adopting the new catalyst are evaluated. For this purpose, new terephthalaldehyde (TPA) and conventional glutaraldehyde (GA) cross-linkers are adopted on a glucose oxidase (GOx), polyethyleneimine (PEI) and carbon nanotube (CNT)(GOx/PEI/CNT) structure. GOx/PEI/CNT cross-linked by TPA (TPA/[GOx/PEI/CNT]) results in a superior EBC performance and stability to other catalysts. It is attributed to the π bonds conjugated between the aldehyde of TPA and amine of the GOx/PEI molecules. By π conjugation, electrons bonded with carbon and nitrogen are delocalized, promoting the electron transfer and catalytic activity with an excellent EBC performance. The maximum power density (MPD) of an EBC adopting TPA/[GOx/PEI/CNT] (0.66 mW cm(-2)) is far better than that of the other EBCs (the MPD of EBC adopting GOx/PEI/CNT is 0.40 mW cm(-2)). Regarding stability, the covalent bonding formed between TPA and GOx/PEI plays a critical role in preventing the denaturation of GOx molecules, leading to an excellent stability. By repeated measurements of the catalytic activity, TPA/[GOx/PEI/CNT] maintains its activity to 92% of its initial value even after five weeks.


Subject(s)
Aldehydes/chemistry , Benzaldehydes/chemistry , Bioelectric Energy Sources , Adsorption , Amines/chemistry , Catalysis , Cross-Linking Reagents/chemistry , Electrochemistry/methods , Electrons , Enzymes/chemistry , Glucose/chemistry , Glucose Oxidase/chemistry , Glutaral/chemistry , Lysine/chemistry , Nanotubes, Carbon/chemistry , Oxidation-Reduction , Polyethyleneimine/chemistry , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...