Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
J Clin Invest ; 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38861331

ABSTRACT

Viral vectors are being used for the treatment of cancer. Yet their efficacy varies among tumors and their use poses challenges in immunosuppressed patients, underscoring the need for alternatives. We report striking antitumoral effects by a nonlytic viral vector based on attenuated lymphocytic choriomeningitis virus (r3LCMV). We show in multiple tumor models that injection of tumor-bearing mice with this vector results in improved tumor control and survival. Importantly, r3LCMV improved tumor control in immunodeficient Rag1-/- mice and MyD88-/- mice, suggesting that multiple pathways contributed to the antitumoral effects. The antitumoral effects of r3LCMV were also observed when this vector was administered several weeks before tumor challenges, suggesting the induction of trained immunity. Single cell RNA-Seq analyses, antibody blockade experiments, and KO models revealed a critical role for host-intrinsic IFN-I in the antitumoral efficacy of r3LCMV vectors. Collectively, these data demonstrate potent antitumoral effects by r3LCMV vectors and unveil multiple mechanisms underlying their antitumoral efficacy.

2.
bioRxiv ; 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38106001

ABSTRACT

Viral vectors are being used for the treatment of cancer. Yet their efficacy varies among tumors and their use poses challenges in immunosuppressed patients, underscoring the need for alternatives. We report striking antitumoral effects by a nonlytic viral vector based on attenuated lymphocytic choriomeningitis virus (r3LCMV). We show in multiple tumor models that injection of tumor-bearing mice with this novel vector results in improved tumor control and survival. Importantly, r3LCMV also improved tumor control in immunodeficient Rag1-/- mice. Single cell RNA-Seq analyses, antibody blockade experiments, and KO models revealed a critical role for host IFN-I in the antitumoral efficacy of r3LCMV vectors. Collectively, these data demonstrate potent antitumoral effects by a replication-attenuated LCMV vector and unveil mechanisms underlying its antitumoral efficacy.

3.
Blood Adv ; 7(23): 7319-7328, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37874915

ABSTRACT

Langerhans cell histiocytosis (LCH) is an inflammatory myeloid neoplasm characterized by the accumulation of clonal mononuclear phagocyte system cells expressing CD1a and CD207. In the past decade, molecular profiling of LCH as well as other histiocytic neoplasms demonstrated that these diseases are driven by MAPK activating alterations, with somatic BRAFV600E mutations in >50% of patients with LCH, and clinical inhibition of MAPK signaling has demonstrated remarkable clinical efficacy. At the same time, activating alterations in kinase-encoding genes, such as PIK3CA, ALK, RET, and CSF1R, which can activate mitogenic pathways independent from the MAPK pathway, have been reported in a subset of histiocytic neoplasms with anecdotal evidence of successful targeted treatment of histiocytoses harboring driver alterations in RET, ALK, and CSF1R. However, evidence supporting the biological consequences of expression of PIK3CA mutations in hematopoietic cells has been lacking, and whether targeted inhibition of PI3K is clinically efficacious in histiocytic neoplasms is unknown. Here, we provide evidence that activating mutations in PIK3CA can drive histiocytic neoplasms in vivo using a conditional knockin mouse expressing mutant PIK3CAH1047R in monocyte/dendritic cell progenitors. In parallel, we demonstrate successful treatment of PIK3CA-mutated, multisystemic LCH using alpelisib, an inhibitor of the alpha catalytic subunit of PI3K. Alpelisib demonstrated a tolerable safety profile at a dose of 750 mg per week and clinical and metabolic complete remission in a patient with PIK3CA-mutated LCH. These data demonstrate PIK3CA as a targetable noncanonical driver of LCH and underscore the importance of mutational analysis-based personalized treatment in histiocytic neoplasms.


Subject(s)
Hematologic Neoplasms , Histiocytosis, Langerhans-Cell , Humans , Animals , Mice , Proto-Oncogene Proteins B-raf/genetics , Histiocytosis, Langerhans-Cell/drug therapy , Receptor Protein-Tyrosine Kinases , Phosphatidylinositol 3-Kinases/therapeutic use , Class I Phosphatidylinositol 3-Kinases/genetics
4.
J Clin Invest ; 132(23)2022 12 01.
Article in English | MEDLINE | ID: mdl-36219482

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein is the main antigen in all approved COVID-19 vaccines and is also the only target for monoclonal antibody (mAb) therapies. Immune responses to other viral antigens are generated after SARS-CoV-2 infection, but their contribution to the antiviral response remains unclear. Here, we interrogated whether nucleocapsid-specific antibodies can improve protection against SARS-CoV-2. We first immunized mice with a nucleocapsid-based vaccine and then transferred sera from these mice into naive mice, followed by challenge with SARS-CoV-2. We show that mice that received nucleocapsid-specific sera or a nucleocapsid-specific mAb exhibited enhanced control of SARS-CoV-2. Nucleocapsid-specific antibodies elicited NK-mediated, antibody-dependent cellular cytotoxicity (ADCC) against infected cells. To our knowledge, these findings provide the first demonstration in the coronavirus literature that antibody responses specific to the nucleocapsid protein can improve viral clearance, providing a rationale for the clinical evaluation of nucleocapsid-based mAb therapies to treat COVID-19.


Subject(s)
Antibodies, Monoclonal , COVID-19 , Nucleocapsid , Animals , Mice , Antibodies, Monoclonal/pharmacology , Antibodies, Viral , COVID-19/therapy , COVID-19 Vaccines , Nucleocapsid/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology
5.
Front Immunol ; 13: 908707, 2022.
Article in English | MEDLINE | ID: mdl-35958615

ABSTRACT

T cell-based therapies have been widely explored for the treatment of cancer and chronic infection, but B cell-based therapies have remained largely unexplored. To study the effect of B cell therapy, we adoptively transferred virus-specific B cells into mice that were chronically infected with lymphocytic choriomeningitis virus (LCMV). Adoptive transfer of virus-specific B cells resulted in increase in antibody titers and reduction of viral loads. Importantly, the efficacy of B cell therapy was partly dependent on antibody effector functions, and was improved by co-transferring virus-specific CD4 T cells. These findings provide a proof-of-concept that adoptive B cell therapy can be effective for the treatment of chronic infections, but provision of virus-specific CD4 T cells may be critical for optimal virus neutralization.


Subject(s)
Lymphocytic Choriomeningitis , Animals , Cell- and Tissue-Based Therapy , Immunotherapy, Adoptive , Lymphocytic Choriomeningitis/therapy , Lymphocytic choriomeningitis virus , Mice , Mice, Inbred C57BL
6.
Curr Protoc Immunol ; 130(1): e99, 2020 09.
Article in English | MEDLINE | ID: mdl-32940427

ABSTRACT

In this invited article, we explain technical aspects of the lymphocytic choriomeningitis virus (LCMV) system, providing an update of a prior contribution by Matthias von Herrath and J. Lindsay Whitton. We provide an explanation of the LCMV infection models, highlighting the importance of selecting an appropriate route and viral strain. We also describe how to quantify virus-specific immune responses, followed by an explanation of useful transgenic systems. Specifically, our article will focus on the following protocols. © 2020 Wiley Periodicals LLC. Basic Protocol 1: LCMV infection routes in mice Support Protocol 1: Preparation of LCMV stocks ASSAYS TO MEASURE LCMV TITERS Support Protocol 2: Plaque assay Support Protocol 3: Immunofluorescence focus assay (IFA) to measure LCMV titer MEASUREMENT OF T CELL AND B CELL RESPONSES TO LCMV INFECTION Basic Protocol 2: Triple tetramer staining for detection of LCMV-specific CD8 T cells Basic Protocol 3: Intracellular cytokine staining (ICS) for detection of LCMV-specific T cells Basic Protocol 4: Enumeration of direct ex vivo LCMV-specific antibody-secreting cells (ASC) Basic Protocol 5: Limiting dilution assay (LDA) for detection of LCMV-specific memory B cells Basic Protocol 6: ELISA for quantification of LCMV-specific IgG antibody Support Protocol 4: Preparation of splenic lymphocytes Support Protocol 5: Making BHK21-LCMV lysate Basic Protocol 7: Challenge models TRANSGENIC MODELS Basic Protocol 8: Transfer of P14 cells to interrogate the role of IFN-I on CD8 T cell responses Basic Protocol 9: Comparing the expansion of naïve versus memory CD4 T cells following chronic viral challenge.


Subject(s)
Adaptive Immunity , Host-Pathogen Interactions/immunology , Lymphocytic Choriomeningitis/immunology , Lymphocytic Choriomeningitis/virology , Lymphocytic choriomeningitis virus/immunology , Animals , Antibodies, Viral/immunology , Antibody Specificity/immunology , B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Cell Culture Techniques , Cell Line , Cytokines/metabolism , Enzyme-Linked Immunosorbent Assay/methods , Fluorescent Antibody Technique/methods , Immunologic Memory , Lymphocyte Depletion , Lymphocytic Choriomeningitis/transmission , Mice , T-Cell Antigen Receptor Specificity , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Viral Load/methods , Viral Plaque Assay/methods
7.
J Exp Med ; 217(12)2020 12 07.
Article in English | MEDLINE | ID: mdl-32820330

ABSTRACT

Type I interferons (IFN-I) are a major antiviral defense and are critical for the activation of the adaptive immune system. However, early viral clearance by IFN-I could limit antigen availability, which could in turn impinge upon the priming of the adaptive immune system. In this study, we hypothesized that transient IFN-I blockade could increase antigen presentation after acute viral infection. To test this hypothesis, we infected mice with viruses coadministered with a single dose of IFN-I receptor-blocking antibody to induce a short-term blockade of the IFN-I pathway. This resulted in a transient "spike" in antigen levels, followed by rapid antigen clearance. Interestingly, short-term IFN-I blockade after coronavirus, flavivirus, rhabdovirus, or arenavirus infection induced a long-lasting enhancement of immunological memory that conferred improved protection upon subsequent reinfections. Short-term IFN-I blockade also improved the efficacy of viral vaccines. These findings demonstrate a novel mechanism by which IFN-I regulate immunological memory and provide insights for rational vaccine design.


Subject(s)
Immunogenicity, Vaccine/immunology , Interferon Type I/antagonists & inhibitors , Interferon-alpha/immunology , Receptor, Interferon alpha-beta/immunology , Viral Vaccines/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Animals , Antibodies, Blocking/immunology , Antibodies, Blocking/pharmacology , Antibodies, Viral/immunology , Antigen Presentation/immunology , CD8-Positive T-Lymphocytes/metabolism , Dendritic Cells/immunology , Disease Models, Animal , Gene Expression/immunology , HEK293 Cells , Humans , Immunologic Memory , Interferon-alpha/genetics , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Knockout , Receptor, Interferon alpha-beta/genetics , Transfection , Zika Virus Infection/virology
8.
Sci Transl Med ; 11(511)2019 09 25.
Article in English | MEDLINE | ID: mdl-31554738

ABSTRACT

Adult stem and progenitor cells are uniquely capable of self-renewal, and targeting this process represents a potential therapeutic opportunity. The early erythroid progenitor, burst-forming unit erythroid (BFU-E), has substantial self-renewal potential and serves as a key cell type for the treatment of anemias. However, our understanding of mechanisms underlying BFU-E self-renewal is extremely limited. Here, we found that the muscarinic acetylcholine receptor, cholinergic receptor, muscarinic 4 (CHRM4), pathway regulates BFU-E self-renewal and that pharmacological inhibition of CHRM4 corrects anemias of myelodysplastic syndrome (MDS), aging, and hemolysis. Genetic down-regulation of CHRM4 or pharmacologic inhibition of CHRM4 using the selective antagonist PD102807 promoted BFU-E self-renewal, whereas deletion of Chrm4 increased erythroid cell production under stress conditions in vivo. Moreover, muscarinic acetylcholine receptor antagonists corrected anemias in mouse models of MDS, aging, and hemolysis in vivo, extending the survival of mice with MDS relative to that of controls. The effects of muscarinic receptor antagonism on promoting expansion of BFU-Es were mediated by cyclic AMP induction of the transcription factor CREB, whose targets up-regulated key regulators of BFU-E self-renewal. On the basis of these data, we propose a model of hematopoietic progenitor self-renewal through a cholinergic-mediated "hematopoietic reflex" and identify muscarinic acetylcholine receptor antagonists as potential therapies for anemias associated with MDS, aging, and hemolysis.


Subject(s)
Cell Self Renewal , Erythroid Cells/cytology , Erythroid Cells/metabolism , Receptors, Muscarinic/metabolism , Stem Cells/cytology , Anemia/drug therapy , Animals , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Erythrocytes/drug effects , Erythrocytes/metabolism , Erythroid Cells/drug effects , Erythroid Precursor Cells , Erythropoiesis/drug effects , Gene Expression Regulation/drug effects , Humans , Mice , Mice, Inbred C57BL , Muscarinic Antagonists/pharmacology , Muscarinic Antagonists/therapeutic use , Stem Cells/drug effects , Stem Cells/metabolism
9.
PLoS Pathog ; 15(2): e1007583, 2019 02.
Article in English | MEDLINE | ID: mdl-30726291

ABSTRACT

CD8 T cells are necessary for the elimination of intracellular pathogens, but during chronic viral infections, CD8 T cells become exhausted and unable to control the persistent infection. Programmed cell death-1 (PD-1) blockade therapies have been shown to improve CD8 T cell responses during chronic viral infections. These therapies have been licensed to treat cancers in humans, but they have not yet been licensed to treat chronic viral infections because limited benefit is seen in pre-clinical animal models of chronic infection. In the present study, we investigated whether TLR4 triggering could improve PD-1 therapy during a chronic viral infection. Using the model of chronic lymphocytic choriomeningitis virus (LCMV) infection in mice, we show that TLR4 triggering with sublethal doses of lipopolysaccharide (LPS) followed by PD-1 blockade results in superior improvement in circulating virus-specific CD8 T cell responses, relative to PD-1 blockade alone. Moreover, we show that the synergy between LPS and PD-1 blockade is dependent on B7 costimulation and mediated by a dendritic cell (DC) intrinsic mechanism. Systemic LPS administration may have safety concerns, motivating us to devise a safer regimen. We show that ex vivo activation of DCs with LPS, followed by adoptive DC transfer, results in a similar potentiation of PD-1 therapy without inducing wasting disease. In summary, our data demonstrate a previously unidentified role for LPS/TLR4 signaling in modulating the host response to PD-1 therapy. These findings may be important for developing novel checkpoint therapies against chronic viral infection.


Subject(s)
Programmed Cell Death 1 Receptor/antagonists & inhibitors , Toll-Like Receptor 4/metabolism , Adoptive Transfer , Animals , CD8-Positive T-Lymphocytes/physiology , Chronic Disease , Dendritic Cells , Female , Lipopolysaccharides/pharmacology , Lymphocyte Activation , Lymphocytic Choriomeningitis , Lymphocytic choriomeningitis virus/immunology , Lymphocytic choriomeningitis virus/pathogenicity , Male , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/immunology , Signal Transduction , Toll-Like Receptor 4/immunology , Virus Diseases/immunology
10.
Cancer Cell ; 34(2): 225-241.e8, 2018 08 13.
Article in English | MEDLINE | ID: mdl-30107174

ABSTRACT

Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.


Subject(s)
Mutation , Neoplasms/genetics , Spliceosomes , Animals , Caspase 8/genetics , Female , Hematopoiesis , Humans , Male , Mice , Mice, Inbred C57BL , NF-kappa B/physiology , Phosphoproteins/genetics , RNA Splicing Factors/genetics , Serine-Arginine Splicing Factors/genetics
11.
J Clin Invest ; 128(9): 3819-3825, 2018 08 31.
Article in English | MEDLINE | ID: mdl-29920189

ABSTRACT

Rearrangements involving the neurotrophic receptor kinase genes (NTRK1, NTRK2, and NTRK3; hereafter referred to as TRK) produce oncogenic fusions in a wide variety of cancers in adults and children. Although TRK fusions occur in fewer than 1% of all solid tumors, inhibition of TRK results in profound therapeutic responses, resulting in Breakthrough Therapy FDA approval of the TRK inhibitor larotrectinib for adult and pediatric patients with solid tumors, regardless of histology. In contrast to solid tumors, the frequency of TRK fusions and the clinical effects of targeting TRK in hematologic malignancies are unknown. Here, through an evaluation for TRK fusions across more than 7,000 patients with hematologic malignancies, we identified TRK fusions in acute lymphoblastic leukemia (ALL), acute myeloid leukemia (AML), histiocytosis, multiple myeloma, and dendritic cell neoplasms. Although TRK fusions occurred in only 0.1% of patients (8 of 7,311 patients), they conferred responsiveness to TRK inhibition in vitro and in vivo in a patient-derived xenograft and a corresponding AML patient with ETV6-NTRK2 fusion. These data identify that despite their individual rarity, collectively, TRK fusions are present in a wide variety of hematologic malignancies and predict clinically significant therapeutic responses to TRK inhibition.


Subject(s)
Hematologic Neoplasms/genetics , Oncogene Fusion , Receptor Protein-Tyrosine Kinases/genetics , Adult , Aged , Animals , Child , Female , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/enzymology , Humans , Infant , Male , Membrane Glycoproteins/antagonists & inhibitors , Membrane Glycoproteins/genetics , Mice , Middle Aged , Oncogene Proteins, Fusion/antagonists & inhibitors , Oncogene Proteins, Fusion/genetics , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-ets/antagonists & inhibitors , Proto-Oncogene Proteins c-ets/genetics , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Receptor Protein-Tyrosine Kinases/antagonists & inhibitors , Receptor, trkA/genetics , Receptor, trkB/antagonists & inhibitors , Receptor, trkB/genetics , Receptor, trkC/genetics , Repressor Proteins/antagonists & inhibitors , Repressor Proteins/genetics , Xenograft Model Antitumor Assays , Young Adult , ETS Translocation Variant 6 Protein
12.
Oncogene ; 37(34): 4692-4710, 2018 08.
Article in English | MEDLINE | ID: mdl-29755131

ABSTRACT

Estrogen receptor alpha (ERα) is a ligand-activated nuclear receptor that directs proliferation and differentiation in selected cancer cell types including mammary-derived carcinomas. These master-regulatory functions of ERα require trans-acting elements such as the pioneer factor FOXA1 to establish a genomic landscape conducive to ERα control. Here, we identify the H3K4 methyltransferase KMT2C as necessary for hormone-driven ERα activity and breast cancer proliferation. KMT2C knockdown suppresses estrogen-dependent gene expression and causes H3K4me1 and H3K27ac loss selectively at ERα enhancers. Correspondingly, KMT2C loss impairs estrogen-driven breast cancer proliferation but has no effect on ER- breast cells. Whereas KMT2C loss disrupts estrogen-driven proliferation, it conversely promotes tumor outgrowth under hormone-depleted conditions. In accordance, KMT2C is one of the most frequently mutated genes in ER-positive breast cancer with KMT2C deletion correlating with significantly shorter progression-free survival on anti-estrogen therapy. From a therapeutic standpoint, KMT2C-depleted cells that develop hormone-independence retain their dependence on ERα, displaying ongoing sensitivity to ERα antagonists. We conclude that KMT2C is a key regulator of ERα activity whose loss uncouples breast cancer proliferation from hormone abundance.


Subject(s)
Breast Neoplasms/metabolism , DNA-Binding Proteins/metabolism , Estrogen Receptor alpha/metabolism , Estrogens/metabolism , Neoplasm Proteins/metabolism , Animals , Cell Line , Cell Line, Tumor , Cell Proliferation/physiology , Female , Gene Expression Regulation, Neoplastic/physiology , HEK293 Cells , Hepatocyte Nuclear Factor 3-alpha/metabolism , Humans , MCF-7 Cells , Mice , Mice, Inbred C57BL , Mice, Transgenic , Progression-Free Survival , Signal Transduction/physiology
13.
Mol Cell ; 69(6): 923-937.e8, 2018 03 15.
Article in English | MEDLINE | ID: mdl-29547721

ABSTRACT

Dietary supplements such as vitamins and minerals are widely used in the hope of improving health but may have unidentified risks and side effects. In particular, a pathogenic link between dietary supplements and specific oncogenes remains unknown. Here we report that chondroitin-4-sulfate (CHSA), a natural glycosaminoglycan approved as a dietary supplement used for osteoarthritis, selectively promotes the tumor growth potential of BRAF V600E-expressing human melanoma cells in patient- and cell line-derived xenograft mice and confers resistance to BRAF inhibitors. Mechanistically, chondroitin sulfate glucuronyltransferase (CSGlcA-T) signals through its product CHSA to enhance casein kinase 2 (CK2)-PTEN binding and consequent phosphorylation and inhibition of PTEN, which requires CHSA chains and is essential to sustain AKT activation in BRAF V600E-expressing melanoma cells. However, this CHSA-dependent PTEN inhibition is dispensable in cancer cells expressing mutant NRAS or PI3KCA, which directly activate the PI3K-AKT pathway. These results suggest that dietary supplements may exhibit oncogene-dependent pro-tumor effects.


Subject(s)
Carcinogens/toxicity , Cell Transformation, Neoplastic/genetics , Chondroitin Sulfates/toxicity , Dietary Supplements/toxicity , Melanoma/chemically induced , Mutation , Proto-Oncogene Proteins B-raf/genetics , Skin Neoplasms/chemically induced , Animals , Antinematodal Agents/pharmacology , Casein Kinase II/metabolism , Cell Proliferation/drug effects , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Female , GTP Phosphohydrolases/genetics , HEK293 Cells , HT29 Cells , Humans , Melanoma/drug therapy , Melanoma/enzymology , Melanoma/genetics , Membrane Proteins/genetics , Mice , Mice, Inbred NOD , Mice, Nude , Mice, Transgenic , NIH 3T3 Cells , Nuclear Proteins/genetics , PTEN Phosphohydrolase/antagonists & inhibitors , PTEN Phosphohydrolase/metabolism , Phosphorylation , Protein Kinase Inhibitors/pharmacology , Signal Transduction , Skin Neoplasms/drug therapy , Skin Neoplasms/enzymology , Skin Neoplasms/genetics , Transcription Factors/genetics , Xenograft Model Antitumor Assays
14.
Blood ; 130(14): 1644-1648, 2017 10 05.
Article in English | MEDLINE | ID: mdl-28801450

ABSTRACT

Classical hairy cell leukemia (cHCL) is characterized by a near 100% frequency of the BRAFV600E mutation, whereas ∼30% of variant HCLs (vHCLs) have MAP2K1 mutations. However, recurrent genetic alterations cooperating with BRAFV600E or MAP2K1 mutations in HCL, as well as those in MAP2K1 wild-type vHCL, are not well defined. We therefore performed deep targeted mutational and copy number analysis of cHCL (n = 53) and vHCL (n = 8). The most common genetic alteration in cHCL apart from BRAFV600E was heterozygous loss of chromosome 7q, the minimally deleted region of which targeted wild-type BRAF, subdividing cHCL into those hemizygous versus heterozygous for the BRAFV600E mutation. In addition to CDKN1B mutations in cHCL, recurrent inactivating mutations in KMT2C (MLL3) were identified in 15% and 25% of cHCLs and vHCLs, respectively. Moreover, 13% of vHCLs harbored predicted activating mutations in CCND3 A change-of-function mutation in the splicing factor U2AF1 was also present in 13% of vHCLs. Genomic analysis of de novo vemurafenib-resistant cHCL identified a novel gain-of-function mutation in IRS1 and losses of NF1 and NF2, each of which contributed to resistance. These data provide further insight into the genetic bases of cHCL and vHCL and mechanisms of RAF inhibitor resistance encountered clinically.


Subject(s)
Leukemia, Hairy Cell/genetics , Mutation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cyclin D3/genetics , Cyclin-Dependent Kinase Inhibitor p27/genetics , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm , Genomics , Humans , Indoles/pharmacology , Indoles/therapeutic use , Leukemia, Hairy Cell/drug therapy , MAP Kinase Kinase 1/genetics , Proto-Oncogene Proteins B-raf/genetics , Splicing Factor U2AF/genetics , Sulfonamides/pharmacology , Sulfonamides/therapeutic use , Vemurafenib
15.
Nature ; 549(7672): 389-393, 2017 09 21.
Article in English | MEDLINE | ID: mdl-28854169

ABSTRACT

The pathophysiology of neurodegenerative diseases is poorly understood and there are few therapeutic options. Neurodegenerative diseases are characterized by progressive neuronal dysfunction and loss, and chronic glial activation. Whether microglial activation, which is generally viewed as a secondary process, is harmful or protective in neurodegeneration remains unclear. Late-onset neurodegenerative disease observed in patients with histiocytoses, which are clonal myeloid diseases associated with somatic mutations in the RAS-MEK-ERK pathway such as BRAF(V600E), suggests a possible role of somatic mutations in myeloid cells in neurodegeneration. Yet the expression of BRAF(V600E) in the haematopoietic stem cell lineage causes leukaemic and tumoural diseases but not neurodegenerative disease. Microglia belong to a lineage of adult tissue-resident myeloid cells that develop during organogenesis from yolk-sac erythro-myeloid progenitors (EMPs) distinct from haematopoietic stem cells. We therefore hypothesized that a somatic BRAF(V600E) mutation in the EMP lineage may cause neurodegeneration. Here we show that mosaic expression of BRAF(V600E) in mouse EMPs results in clonal expansion of tissue-resident macrophages and a severe late-onset neurodegenerative disorder. This is associated with accumulation of ERK-activated amoeboid microglia in mice, and is also observed in human patients with histiocytoses. In the mouse model, neurobehavioural signs, astrogliosis, deposition of amyloid precursor protein, synaptic loss and neuronal death were driven by ERK-activated microglia and were preventable by BRAF inhibition. These results identify the fetal precursors of tissue-resident macrophages as a potential cell-of-origin for histiocytoses and demonstrate that a somatic mutation in the EMP lineage in mice can drive late-onset neurodegeneration. Moreover, these data identify activation of the MAP kinase pathway in microglia as a cause of neurodegeneration and this offers opportunities for therapeutic intervention aimed at the prevention of neuronal death in neurodegenerative diseases.


Subject(s)
Erythroid Precursor Cells/pathology , MAP Kinase Signaling System , Mutation , Myeloid Progenitor Cells/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Proto-Oncogene Proteins B-raf/genetics , Animals , Clone Cells/enzymology , Clone Cells/metabolism , Clone Cells/pathology , Disease Models, Animal , Erythroid Precursor Cells/enzymology , Erythroid Precursor Cells/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Female , Histiocytosis/enzymology , Histiocytosis/genetics , Histiocytosis/metabolism , Histiocytosis/pathology , Humans , Macrophages/enzymology , Macrophages/metabolism , Macrophages/pathology , Male , Mice , Microglia/enzymology , Microglia/metabolism , Microglia/pathology , Mosaicism , Myeloid Progenitor Cells/enzymology , Myeloid Progenitor Cells/metabolism , Neurodegenerative Diseases/enzymology , Neurodegenerative Diseases/metabolism , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism
16.
Blood ; 130(4): 397-407, 2017 07 27.
Article in English | MEDLINE | ID: mdl-28576879

ABSTRACT

Chronic myelomonocytic leukemia (CMML) and juvenile myelomonocytic leukemia (JMML) are myelodysplastic syndrome (MDS)/myeloproliferative neoplasm (MPN) overlap disorders characterized by monocytosis, myelodysplasia, and a characteristic hypersensitivity to granulocyte-macrophage colony-stimulating factor (GM-CSF). Currently, there are no available disease-modifying therapies for CMML, nor are there preclinical models that fully recapitulate the unique features of CMML. Through use of immunocompromised mice with transgenic expression of human GM-CSF, interleukin-3, and stem cell factor in a NOD/SCID-IL2Rγnull background (NSGS mice), we demonstrate remarkable engraftment of CMML and JMML providing the first examples of serially transplantable and genetically accurate models of CMML. Xenotransplantation of CD34+ cells (n = 8 patients) or unfractionated bone marrow (BM) or peripheral blood mononuclear cells (n = 10) resulted in robust engraftment of CMML in BM, spleen, liver, and lung of recipients (n = 82 total mice). Engrafted cells were myeloid-restricted and matched the immunophenotype, morphology, and genetic mutations of the corresponding patient. Similar levels of engraftment were seen upon serial transplantation of human CD34+ cells in secondary NSGS recipients (2/5 patients, 6/11 mice), demonstrating the durability of CMML grafts and functionally validating CD34+ cells as harboring the disease-initiating compartment in vivo. Successful engraftments of JMML primary samples were also achieved in all NSGS recipients (n = 4 patients, n = 12 mice). Engraftment of CMML and JMML resulted in overt phenotypic abnormalities and lethality in recipients, which facilitated evaluation of the JAK2/FLT3 inhibitor pacritinib in vivo. These data reveal that NSGS mice support the development of CMML and JMML disease-initiating and mature leukemic cells in vivo, allowing creation of genetically accurate preclinical models of these disorders.


Subject(s)
Bridged-Ring Compounds/pharmacology , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Leukemia, Myelomonocytic, Juvenile/drug therapy , Myelodysplastic Syndromes/drug therapy , Pyrimidines/pharmacology , Animals , Female , Heterografts , Humans , Janus Kinase 2/antagonists & inhibitors , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology , Leukemia, Myelomonocytic, Juvenile/genetics , Leukemia, Myelomonocytic, Juvenile/metabolism , Leukemia, Myelomonocytic, Juvenile/pathology , Male , Mice , Mice, Inbred NOD , Mice, SCID , Myelodysplastic Syndromes/metabolism , Myelodysplastic Syndromes/pathology , Neoplasm Proteins/antagonists & inhibitors , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Xenograft Model Antitumor Assays , fms-Like Tyrosine Kinase 3/antagonists & inhibitors , fms-Like Tyrosine Kinase 3/genetics , fms-Like Tyrosine Kinase 3/metabolism
17.
Nat Commun ; 8: 15429, 2017 05 18.
Article in English | MEDLINE | ID: mdl-28516957

ABSTRACT

Additional sex combs-like (ASXL) proteins are mammalian homologues of additional sex combs (Asx), a regulator of trithorax and polycomb function in Drosophila. While there has been great interest in ASXL1 due to its frequent mutation in leukemia, little is known about its paralog ASXL2, which is frequently mutated in acute myeloid leukemia patients bearing the RUNX1-RUNX1T1 (AML1-ETO) fusion. Here we report that ASXL2 is required for normal haematopoiesis with distinct, non-overlapping effects from ASXL1 and acts as a haploinsufficient tumour suppressor. While Asxl2 was required for normal haematopoietic stem cell self-renewal, Asxl2 loss promoted AML1-ETO leukemogenesis. Moreover, ASXL2 target genes strongly overlapped with those of RUNX1 and AML1-ETO and ASXL2 loss was associated with increased chromatin accessibility at putative enhancers of key leukemogenic loci. These data reveal that Asxl2 is a critical regulator of haematopoiesis and mediates transcriptional effects that promote leukemogenesis driven by AML1-ETO.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Gene Expression Regulation, Leukemic , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/genetics , Repressor Proteins/genetics , Animals , Bone Marrow Transplantation , Core Binding Factor Alpha 2 Subunit/metabolism , Disease Models, Animal , Haploinsufficiency , Hematopoiesis/genetics , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/metabolism , Humans , Integrases/genetics , Integrases/metabolism , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Knockout , Myxovirus Resistance Proteins/genetics , Myxovirus Resistance Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Repressor Proteins/deficiency , Signal Transduction , Survival Analysis
18.
Cell Metab ; 25(2): 358-373, 2017 02 07.
Article in English | MEDLINE | ID: mdl-28089569

ABSTRACT

Lifestyle factors, including diet, play an important role in the survival of cancer patients. However, the molecular mechanisms underlying pathogenic links between diet and particular oncogenic mutations in human cancers remain unclear. We recently reported that the ketone body acetoacetate selectively enhances BRAF V600E mutant-dependent MEK1 activation in human cancers. Here we show that a high-fat ketogenic diet increased serum levels of acetoacetate, leading to enhanced tumor growth potential of BRAF V600E-expressing human melanoma cells in xenograft mice. Treatment with hypolipidemic agents to lower circulating acetoacetate levels or an inhibitory homolog of acetoacetate, dehydroacetic acid, to antagonize acetoacetate-BRAF V600E binding attenuated BRAF V600E tumor growth. These findings reveal a signaling basis underlying a pathogenic role of dietary fat in BRAF V600E-expressing melanoma, providing insights into the design of conceptualized "precision diets" that may prevent or delay tumor progression based on an individual's specific oncogenic mutation profile.


Subject(s)
Dietary Fats/adverse effects , Ketone Bodies/metabolism , Melanoma/pathology , Mutation/genetics , Proto-Oncogene Proteins B-raf/genetics , 3-Hydroxybutyric Acid/pharmacology , Acetoacetates/administration & dosage , Acetoacetates/blood , Acetoacetates/pharmacology , Animals , Cell Proliferation/drug effects , Female , Humans , Hypolipidemic Agents/pharmacology , Injections, Intraperitoneal , Melanoma/blood , Mice , Mice, Nude , Pyrones/chemistry , Pyrones/pharmacology , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...