Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
Add more filters










Publication year range
2.
J Thromb Haemost ; 10(5): 870-80, 2012 May.
Article in English | MEDLINE | ID: mdl-22385910

ABSTRACT

BACKGROUND: The conversion of prothrombin to thrombin is one of two non-duplicated enzymatic reactions during coagulation. Thrombin has long been considered an optimal anticoagulant target because it plays a crucial role in fibrin clot formation by catalyzing the cleavage of fibrinogen, upstream coagulation cofactors and platelet receptors. Although a number of anti-thrombin therapeutics exist, it is challenging to use them clinically due to their propensity to induce bleeding. Previously, we isolated a modified RNA aptamer (R9D-14) that binds prothrombin with high affinity and is a potent anticoagulant in vitro. OBJECTIVES: We sought to explore the structure of R9D-14 and elucidate its anticoagulant mechanism(s). In addition to designing an optimized aptamer (RNA(R9D-14T)), we also explored whether complementary antidote oligonucleotides can rapidly modulate the optimized aptamer's anticoagulant activity. METHODS AND RESULTS: RNA(R9D-14T) binds prothrombin and thrombin pro/exosite I with high affinity and inhibits both thrombin generation and thrombin exosite I-mediated activity (i.e. fibrin clot formation, feedback activity and platelet activation). RNA(R9D-14T) significantly prolongs the aPTT, PT and TCT clotting assays, and is a more potent inhibitor than the thrombin exosite I DNA aptamer ARC-183. Moreover, a complementary oligonucleotide antidote can rapidly (< 2 min) and durably (>2 h) reverse RNA(R9D-14T) anticoagulation in vitro. CONCLUSIONS: Powerful anticoagulation, in conjunction with antidote reversibility, suggests that RNA(R9D-14T) may be ideal for clinical anticoagulation in settings that require rapid and robust anticoagulation, such as cardiopulmonary bypass, deep vein thrombosis, stroke or percutaneous coronary intervention.


Subject(s)
Anticoagulants/pharmacology , Antidotes/pharmacology , Aptamers, Nucleotide/pharmacology , Blood Coagulation/drug effects , Prothrombin/metabolism , Thrombin/metabolism , Animals , Anticoagulants/chemistry , Anticoagulants/metabolism , Antidotes/chemistry , Antidotes/metabolism , Aptamers, Nucleotide/chemistry , Aptamers, Nucleotide/metabolism , Base Sequence , Binding, Competitive , Catalytic Domain , Cattle , Dogs , Drug Stability , Enzyme Activation , Factor Va/metabolism , Half-Life , Humans , Mice , Molecular Sequence Data , Nucleic Acid Conformation , Partial Thromboplastin Time , Platelet Activation/drug effects , Protein Binding , Prothrombin Time , Rabbits , Rats , Ribonucleases/metabolism , SELEX Aptamer Technique , Sheep , Species Specificity , Structure-Activity Relationship , Swine , Thrombin Time
4.
J Thromb Haemost ; 8(6): 1323-32, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20180817

ABSTRACT

BACKGROUND: Activation of tumor cell-associated coagulation and plasminogen activator pathways occurs in malignant disease processes, including breast cancer, and may promote metastatic activity. OBJECTIVES/METHODS: To compare the coagulation and plasminogen activator pathways of normal and metastatic cells, we examined two cell lines from the MCF-10 family of breast cells: near-normal immortalized MCF-10A cells, and metastatic MCF-10CA1 cells. RESULTS: MCF-10CA1 cell motility was significantly increased as compared with that of MCF-10A cells. The two cell types supported similar rates of factor Xa generation, plasma thrombin generation, and fibrin formation. MCF-10A cells produced a stable fibrin network, whereas MCF-10CA1 cells lysed the surrounding fibrin network within 24 h of network formation. Importantly, fibrin located proximal to (within 10 microm) the MCF-10CA1 cell surface lysed substantially faster than fibrin located 100 microm from the surface. MCF-10CA1 cells supported significantly increased plasmin generation rates as compared with MCF-10A cells, providing a mechanism for the increased fibrinolytic activity of these cells towards the fibrin network. Metastatic MCF-10CA1 cells had increased expression (mRNA and protein) levels of urokinase plasminogen activator (u-PA) and decreased levels of plasminogen activator inhibitor-1 as compared with MCF-10A cells. Blocking u-PA activity with the active site-directed protease inhibitor amiloride substantially decreased MCF-10CA1 cell motility. Phosphorylated Akt levels were elevated in MCF-10CA1 cells, which partially explains the increased u-PA expression. CONCLUSIONS: These results suggest that the tumor-associated plasminogen activator pathway, not the coagulation pathway, is a key distinguishing feature between metastatic MCF10-CA1 cells and normal MCF-10A cells.


Subject(s)
Blood Coagulation , Breast Neoplasms/metabolism , Plasminogen Activators/metabolism , Base Sequence , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Primers , Female , Humans , Neoplasm Metastasis , Pregnancy
5.
J Thromb Haemost ; 5 Suppl 1: 102-15, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17635716

ABSTRACT

Hemostasis and fibrinolysis, the biological processes that maintain proper blood flow, are the consequence of a complex series of cascading enzymatic reactions. Serine proteases involved in these processes are regulated by feedback loops, local cofactor molecules, and serine protease inhibitors (serpins). The delicate balance between proteolytic and inhibitory reactions in hemostasis and fibrinolysis, described by the coagulation, protein C and fibrinolytic pathways, can be disrupted, resulting in the pathological conditions of thrombosis or abnormal bleeding. Medicine capitalizes on the importance of serpins, using therapeutics to manipulate the serpin-protease reactions for the treatment and prevention of thrombosis and hemorrhage. Therefore, investigation of serpins, their cofactors, and their structure-function relationships is imperative for the development of state-of-the-art pharmaceuticals for the selective fine-tuning of hemostasis and fibrinolysis. This review describes key serpins important in the regulation of these pathways: antithrombin, heparin cofactor II, protein Z-dependent protease inhibitor, alpha(1)-protease inhibitor, protein C inhibitor, alpha(2)-antiplasmin and plasminogen activator inhibitor-1. We focus on the biological function, the important structural elements, their known non-hemostatic roles, the pathologies related to deficiencies or dysfunction, and the therapeutic roles of specific serpins.


Subject(s)
Fibrinolysis/physiology , Hemostasis/physiology , Serpins/physiology , Thrombosis/physiopathology , Humans
6.
J Thromb Haemost ; 5(7): 1486-92, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17635698

ABSTRACT

BACKGROUND: Protein C inhibitor (PCI) and antithrombin (AT) are serine protease inhibitors (serpins) that inhibit a wide array of blood coagulation serine proteases including thrombin. OBJECTIVE: Fifty-five Ala-scanned recombinant thrombin mutants were used to determine thrombin residues important for inhibition by PCI with and without the cofactors heparin and thrombomodulin (TM) and compared with the prototypical serpin, AT. RESULTS: Residues around the active site (Tyr50 and Glu202) and the sodium-binding site (Glu229 and Arg233) were required for thrombin inhibition by PCI with and without cofactors. Exosite-2 residues (Arg89, Arg93, Glu94, Arg98, Arg245, Arg248, and Gln251) were critical for heparin-accelerated inhibition of thrombin by PCI. Exosite-1 residues (especially Lys65 and Tyr71) were required for enhanced PCI inhibition of thrombin-TM. Interestingly, we also found that the TM chondroitin sulfate moiety is not required for the approximately 150-fold enhanced rate of thrombin inhibition by PCI. Using the aforementioned thrombin exosite-2 mutants that were essential for heparin-catalyzed PCI-thrombin inhibition reactions we found no change in PCI inhibition rates for thrombin-TM. CONCLUSIONS: Collectively, these results show that (i) similar thrombin exosite-2 residues are critical for the heparin-catalyzed inhibition by PCI and AT, (ii) PCI and AT are different in their thrombin-TM inhibition properties, and (iii) PCI has a distinct advantage over AT in the regulation of the activity of thrombin-TM.


Subject(s)
Heparin/metabolism , Protein C Inhibitor/pharmacology , Thrombin/antagonists & inhibitors , Thrombin/genetics , Thrombomodulin/metabolism , Amino Acid Substitution , Binding Sites/genetics , Heparin/pharmacology , Humans , In Vitro Techniques , Models, Molecular , Multiprotein Complexes , Mutagenesis, Site-Directed , Protein C Inhibitor/genetics , Protein Conformation , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Thrombin/chemistry , Thrombin/metabolism
8.
J Thromb Haemost ; 2(7): 1127-34, 2004 Jul.
Article in English | MEDLINE | ID: mdl-15219196

ABSTRACT

BACKGROUND: Factor (F)Xa has 11 gamma-carboxylated glutamic acid (Gla) residues that are involved in calcium-dependent membrane binding. The serpin antithrombin (AT) is an important physiological regulator of FXa activity in an inhibition reaction that is enhanced by heparin. Recently, Rezaie showed that calcium further enhanced the heparin-catalyzed AT inhibition of FXa by promoting 'ternary complex' formation, and these results showed a role for the gamma-carboxyl-glutamate (Gla)-domain of FXa. OBJECTIVES: In this study, we used recombinant FXa mutants to assess the role of individual Gla residues in augmenting or antagonizing the AT-heparin inhibition reaction in the presence of calcium. RESULTS AND CONCLUSIONS: In the absence of heparin, AT inhibition of plasma and the recombinant FXas were essentially equivalent. Similar to plasma-derived FXa, calcium increased about 3-fold the inhibition rate of wild-type recombinant FXa by AT-heparin over that in the presence of EDTA. Interestingly, three different effects were found with the recombinant FXa Gla-mutants for AT-heparin inhibition: (i) Gla-->Asp 14 and 29 were enhanced without calcium; (ii) Gla-->Asp 16 and 26 were not enhanced by calcium; and (iii) Gla-->Asp 19 was essentially the same as wild-type recombinant FXa. These results support a theory that mutating individual Gla residues in FXa alters the calcium-induced conformational changes in the Gla region and affects the antithrombin-heparin inhibition reaction.


Subject(s)
1-Carboxyglutamic Acid/physiology , Antithrombins/pharmacology , Calcium/pharmacology , Factor Xa/chemistry , Heparin/pharmacology , Amino Acid Substitution , Binding Sites , Dose-Response Relationship, Drug , Factor Xa/genetics , Factor Xa/metabolism , Heparin/metabolism , Humans , Models, Molecular , Protein Binding , Protein Structure, Tertiary/physiology
10.
FEBS Lett ; 484(2): 87-91, 2000 Nov 03.
Article in English | MEDLINE | ID: mdl-11068038

ABSTRACT

'Thrombin aptamers' are based on the 15-nucleotide consensus sequence of d(GGTTGGTGTGGTTGG) that binds specifically to thrombin's anion-binding exosite-I. The effect of aptamer-thrombin interactions during inhibition by the serine protease inhibitor (serpin) heparin cofactor II (HCII) and antithrombin (AT) has not been described. Thrombin inhibition by HCII without glycosaminoglycan was decreased approximately two-fold by the aptamer. In contrast, the aptamer dramatically reduced thrombin inhibition by >200-fold and 30-fold for HCII-heparin and HCII-dermatan sulfate, respectively. The aptamer had essentially no effect on thrombin inhibition by AT with or without heparin. These results add to our understanding of thrombin aptamer activity for potential clinical application, and they further demonstrate the importance of thrombin exosite-I during inhibition by HCII-glycosaminoglycans.


Subject(s)
Antithrombins/pharmacology , Heparin Cofactor II/pharmacology , Oligodeoxyribonucleotides/pharmacology , Thrombin/antagonists & inhibitors , Dermatan Sulfate/pharmacology , Drug Interactions , Glycosaminoglycans/pharmacology , Humans , Models, Molecular , Thrombin/chemistry , Thrombin/genetics
11.
Leuk Res ; 24(7): 559-65, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10867129

ABSTRACT

Asparaginase (ASNase) is a widely used and successful agent against childhood acute lymphoblastic leukemia (ALL). Asparaginase cleaves asparagine (Asn) to give aspartic acid and ammonia, thereby depleting free Asn in the blood. However, treatment with ASNase has been implicated in significant reduction of plasma levels of the coagulation serine protease inhibitor (serpin) antithrombin III (AT3), predisposing patients to thromboembolic complications. Our investigation was designed to delineate the biochemical mechanism of AT3 depletion that can occur in the plasma of ALL patients undergoing ASNase therapy. SDS-PAGE showed no cleavage of purified AT3 following treatment with ASNase. Furthermore, purified AT3 treated with ASNase demonstrated no decrease in inhibitory activity. Human plasma and whole blood treated with approximate therapeutic concentrations of ASNase showed no loss of AT3 activity as detected by a plasma-based factor Xa inhibition assay. Treatment of a confluent monolayer of HepG2 (hepatocarcinoma) cells with ASNase showed no gross loss in AT3 message levels detected by rtPCR. However, a decrease of cell viability was observed in cultures treated with ASNase. Interestingly, medium from HepG2 cells treated with ASNase showed a marked decrease in secretion of AT3 and another serpin, heparin cofactor II. Collectively, these data show that ASNase has no direct effect on AT3 in blood or plasma, but that ASNase may affect plasma levels of AT3 by interfering with translation and/or secretion of the protein in liver cells.


Subject(s)
Antineoplastic Agents/pharmacology , Antithrombin III/metabolism , Asparaginase/pharmacology , Antineoplastic Agents/therapeutic use , Antithrombin III/drug effects , Antithrombin III/genetics , Asparaginase/therapeutic use , Cell Survival , Humans , Plasma , Precursor Cell Lymphoblastic Leukemia-Lymphoma/blood , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Protein Biosynthesis/drug effects , RNA, Messenger/metabolism , Serpins/metabolism , Tumor Cells, Cultured
12.
J Biol Chem ; 275(24): 18085-92, 2000 Jun 16.
Article in English | MEDLINE | ID: mdl-10749870

ABSTRACT

Biglycan and decorin are small dermatan sulfate-containing proteoglycans in the extracellular matrix of the artery wall. The dermatan sulfate chains are known to stimulate thrombin inhibition by heparin cofactor II (HCII), a plasma proteinase inhibitor that has been detected within the artery wall. The purpose of this study was to analyze the HCII-stimulatory activity of biglycan and decorin isolated from normal human aorta and atherosclerotic lesions type II through VI and to correlate activity with dermatan sulfate chain composition and structure. Biglycan and decorin from plaque exhibited a 24-75% and 38-79% loss of activity, respectively, in thrombin-HCII inhibition assays relative to proteoglycan from normal aorta. A significant negative linear relationship was observed between lesion severity and HCII stimulatory activity (r = 0.79, biglycan; r = 0.63, decorin; p < 0.05). Biglycan, but not decorin, from atherosclerotic plaque contained significantly reduced amounts of iduronic acid and disulfated disaccharides DeltaDi-2,4S and DeltaDi-4,6S relative to proteoglycan from normal artery. Affinity coelectrophoresis analysis of a subset of samples demonstrated that increased interaction of proteoglycan with HCII in agarose gels paralleled increased activity in thrombin-HCII inhibition assays. In conclusion, both biglycan and decorin from atherosclerotic plaque possessed reduced activity with HCII, but only biglycan demonstrated a correlation between activity and specific glycosaminoglycan structural features. Loss of the ability of biglycan and decorin in atherosclerotic lesions to regulate thrombin activity through HCII may be critical in the progression of the disease.


Subject(s)
Arteriosclerosis/pathology , Dermatan Sulfate/chemistry , Heparin Cofactor II/metabolism , Proteoglycans/metabolism , Aorta/chemistry , Biglycan , Cells, Cultured , Chromatography, Gel , Decorin , Extracellular Matrix Proteins , Glycosaminoglycans/chemistry , Humans , Protein Conformation , Structure-Activity Relationship
13.
J Biol Chem ; 274(49): 34556-65, 1999 Dec 03.
Article in English | MEDLINE | ID: mdl-10574918

ABSTRACT

Heparin cofactor II (HCII) is a serpin whose thrombin inhibition activity is accelerated by glycosaminoglycans. We describe the novel properties of a carboxyl-terminal histidine-tagged recombinant HCII (rHCII-CHis(6)). Thrombin inhibition by rHCII-CHis(6) was increased >2-fold at approximately 5 microgram/ml heparin compared with wild-type recombinant HCII (wt-rHCII) at 50-100 microgram/ml heparin. Enhanced activity of rHCII-CHis(6) was reversed by treatment with carboxypeptidase A. We assessed the role of the HCII acidic domain by constructing amino-terminal deletion mutants (Delta1-52, Delta1-68, and Delta1-75) in wt-rHCII and rHCII-CHis(6). Without glycosaminoglycan, unlike wt-rHCII deletion mutants, the rHCII-CHis(6) deletion mutants were less active compared with full-length rHCII-CHis(6). With glycosaminoglycans, Delta1-68 and Delta1-75 rHCIIs were all less active. We assessed the character of the tag by comparing rHCII-CHis(6), rHCII-CAla(6), and rHCII-CLys(6) to wt-rHCII. Only rHCII-CHis(6) had increased activity with heparin, whereas all three mutants have increased heparin binding. We generated a carboxyl-terminal histidine-tagged recombinant antithrombin III to study the tag on another serpin. Interestingly, this mutant antithrombin III had reduced heparin cofactor activity compared with wild-type protein. In a plasma-based assay, the glycosaminoglycan-dependent inhibition of thrombin by rHCII-CHis(6) was significantly greater compared with wt-rHCII. Thus, HCII variants with increased function, such as rHCII-CHis(6), may offer novel reagents for clinical application.


Subject(s)
Heparin Cofactor II/metabolism , Serine Proteinase Inhibitors/metabolism , Alanine/metabolism , Anticoagulants/pharmacology , Antithrombin III/genetics , Antithrombin III/metabolism , Antithrombin III Deficiency/metabolism , Antithrombins/pharmacology , Carboxypeptidases/pharmacology , Carboxypeptidases A , Dermatan Sulfate/pharmacology , Factor Xa Inhibitors , Glycosaminoglycans/metabolism , Glycosaminoglycans/pharmacology , Heparin/pharmacology , Heparin Cofactor II/genetics , Hirudins/analogs & derivatives , Hirudins/pharmacology , Humans , Kinetics , Lysine/metabolism , Mutagenesis, Site-Directed , Peptide Fragments/pharmacology , Protein Binding , Recombinant Proteins/metabolism , Sepharose/metabolism , Serine Proteinase Inhibitors/genetics , Thrombin/antagonists & inhibitors
14.
J Biol Chem ; 273(47): 31203-8, 1998 Nov 20.
Article in English | MEDLINE | ID: mdl-9813026

ABSTRACT

Site-directed mutagenesis was used to investigate the role of basic residues in the thrombin anion-binding exosite-I during formation of thrombin-antithrombin III (ATIII), thrombin-protease nexin 1 (PN1), and thrombin-heparin cofactor II (HCII) inhibitor complexes, in the absence and presence of glycosaminoglycans. In the absence of glycosaminoglycan, association rate constant (kon) values for the inhibition of the mutant thrombins (R35Q, K36Q, R67Q, R73Q, R75Q, R77(a)Q, K81Q, K109Q, K110Q, and K149(e)Q) by ATIII and PN1 were similar to wild-type recombinant thrombin (rIIa), whereas kon values were decreased 2-3-fold for HCII against the majority of the exosite-I mutants. The exosite-I mutants did not have a significant effect on heparin-accelerated inhibition by ATIII with maximal kon values similar to rIIa. A small effect was seen for PN1/heparin inhibition of the exosite-I mutants R35Q, R67Q, R73Q, R75Q, and R77(a)Q, where kon values were decreased 2-4-fold, compared with rIIa. For HCII/heparin, kon values for inhibition of the exosite-I mutants (except R67Q, R73Q, and K149(e)Q) were 2-3-fold lower than rIIa. Larger decreases in kon values for HCII/heparin were found for R67Q and R73Q thrombins with 441- and 14-fold decreases, respectively, whereas K149(e)Q was unchanged. For HCII/dermatan sulfate, R67Q and R73Q had kon values reduced 720- and 48-fold, respectively, whereas the remaining mutants were decreased 3-7-fold relative to rIIa. The results suggest that ATIII has no major interaction with exosite-I of thrombin with or without heparin. PN1 bound to heparin uses exosite-I to some extent, possibly by utilizing the positive electrostatic field of exosite-I to enhance orientation and thrombin complex formation. The larger effects of the thrombin exosite-I mutants for HCII inhibition with heparin and dermatan sulfate indicate its need for exosite-I, presumably through contact of the "hirudin-like" domain of HCII with exosite-I of thrombin.


Subject(s)
Antithrombin III/metabolism , Carrier Proteins/metabolism , Heparin Cofactor II/metabolism , Serpins/metabolism , Thrombin/metabolism , Amino Acid Sequence , Amyloid beta-Protein Precursor , Anions , Binding Sites , Glycosaminoglycans/pharmacology , Heparin/pharmacology , Hirudins/metabolism , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Protease Nexins , Protein Binding , Receptors, Cell Surface , Sequence Alignment , Thrombin/genetics
15.
Arch Biochem Biophys ; 355(1): 101-8, 1998 Jul 01.
Article in English | MEDLINE | ID: mdl-9647672

ABSTRACT

Protein C inhibitor (PCI) is a heparin-binding serine protease inhibitor (serpin) that regulates hemostatic proteases such as activated protein C (APC) and thrombin. The work described here provides further evidence that the PCI H helix, but not the D helix, has a major role in heparin-accelerated inhibition of APC and thrombin. We previously identified Arg-269 and Lys-270 of the H helix [R269A/K270A "H1" recombinant PCI (rPCI)] as important residues both for heparin-accelerated inhibition of thrombin and APC and for heparin-Sepharose binding (Shirk, R. A., Elisen, M. G. L. M., Meijers, J. C. M., and Church, F. C. (1994) J. Biol. Chem. 269, 28690-28695). H1 rPCI was used as a template for Ala-scanning mutagenesis of other H helix basic residues (H1-K266A, H1-K273A, and H1-K266A/K273A) and of the D helix basic residues (H1-K82A, H1-K86A, H1-R90A, and H1-K82A/K86A/R90A). Compared to wild-type rPCI/heparin (k2 = 2.2 x 10(7) M-1 min-1 for thrombin), heparin-accelerated thrombin inhibition was decreased 2.4-fold by H1 rPCI, 4.4-fold by H1-K266A rPCI, and 8-fold by H1-K273A rPCI. H1-K266A/K273A rPCI thrombin inhibition was essentially not accelerated by heparin. A similar trend was found for APC-heparin inhibition using these H helix rPCI mutants. In contrast, the D helix rPCI mutants did not have further reduced heparin-stimulated thrombin or APC inhibition compared to H1 rPCI. Interestingly, all of the H and D helix rPCI mutants had reduced heparin-Sepharose binding activity (ranging from 180 to 360 mM NaCl) compared to wild-type rPCI and H1 rPCI, which eluted at 650 and 430 mM NaCl, respectively. These data suggest that all four basic residues (Lys-266, Arg-269, Lys-270, Lys-273) in the H helix of PCI form a heparin binding site. Our results also imply that while the D helix basic residues (Lys-80, Lys-86, and Arg-90) contribute to overall heparin binding, they are not necessary for heparin-accelerated activity. We conclude that the primary heparin binding site of PCI is the H helix and not the D helix as found in other homologous heparin-binding serpins such as antithrombin III, heparin cofactor II, and protease nexin 1.


Subject(s)
Heparin/metabolism , Protein C Inhibitor/chemistry , Protein C Inhibitor/metabolism , Animals , Base Sequence , Binding Sites/genetics , DNA Primers/genetics , In Vitro Techniques , Kinetics , Models, Molecular , Mutagenesis, Site-Directed , Polymerase Chain Reaction , Protein Binding , Protein C Inhibitor/genetics , Protein Conformation , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
16.
J Protein Chem ; 16(8): 819-28, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9365930

ABSTRACT

Urokinase-type plasminogen activator (uPA) is a serine protease involved in pericellular proteolysis and tumor cell metastasis via plasmin-mediated degradation of extracellular matrix proteins. Plasma uPA is inhibited by the serine protease inhibitor protein C inhibitor (PCI) by the insertion of PCI's reactive site loop into the active site of the protease. To better understand the structural aspects of this inhibition, 15 reactive-site mutants of recombinant PCI (rPCI) were assayed for differences in uPA inhibition. These assays revealed that substitutions at the P1 Arg354 and P3 Thr352 sites of rPCI were detrimental to inhibitory activity, while P3' Arg357 mutations had little effect upon the inhibition rate. However, replacement of the P2 Phe353 with small residues like Ala and Gly increased the effectiveness of rPCI three- to four fold. To explain these altered rates of inhibition, a computer-derived molecular model of uPA was generated and docked to a model of PCI to simulate complex formation. The changes made by mutagenesis were then recreated in the model of uPA-PCI. In accordance with the kinetic data, the poor performance of P3 variants is primarily attributable to charge repulsion, while alleviation of steric hindrance at P2 produces the observed increase in uPA inhibition. In the model, residues at P3' interact with PCI rather than uPA, consistent with P3' variants demonstrating that little variation from wild-type activity. Ultimately, this combination of mutagenesis and molecular modeling will further refine our understanding of the interaction between PCI and uPA.


Subject(s)
Protein C Inhibitor/genetics , Protein C Inhibitor/metabolism , Urokinase-Type Plasminogen Activator/metabolism , Amino Acid Sequence , Amino Acid Substitution , Animals , Binding Sites , Enzyme Activation , Humans , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , Point Mutation , Protein Conformation , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Structure-Activity Relationship
17.
J Biol Chem ; 272(22): 14074-9, 1997 May 30.
Article in English | MEDLINE | ID: mdl-9162031

ABSTRACT

Heparin cofactor II (HCII) is presumed to be a physiological inhibitor of the serine proteinase thrombin. The reaction between HCII and thrombin is quite unique, because it involves an unusual HCII-reactive site loop sequence of Leu444-Ser445, requires the presence of glycosaminoglycans for optimal activity and involves a protein-protein interaction besides the reactive site loop-active site interaction characteristic of serine proteinase inhibitor-serine proteinase pairs. Two mutations at a unique HCII residue, Arg200 --> Ala or Glu, were generated by site-directed mutagenesis. The mutations did not alter either HCII binding to heparin-Sepharose or HCII inhibition of thrombin in the presence of heparin or dermatan sulfate, suggesting that Arg200 is not part of the glycosaminoglycan binding site of HCII. In the absence of glycosaminoglycan, there was a significant increase in alpha-thrombin inhibition by the Arg200 mutants as compared with wild type recombinant HCII (wt-rHCII), whereas inhibition rates with chymotrypsin were identical. Inhibition of gammaT-thrombin, which lacks anion-binding exosite 1 ((ABE-1), the region of alpha-thrombin that interacts with the acidic domain of HCII), was significantly reduced compared with alpha-thrombin, but the reduction was more dramatic for the Arg200-rHCII mutants. Hirugen, which binds to ABE-1 of alpha-thrombin, also diminished inhibition of alpha-thrombin by the Arg200-rHCII mutants to nearly wt-rHCII levels. Both Arg200-rHCII mutants had significantly increased ka values as compared with wt-rHCII, whereas the kd rates were unchanged. Collectively, these results suggest that the improved inhibitory activity of the Arg200-rHCII mutants is mediated by enhanced interactions between the acidic domain and ABE-1, resulting in an increased HCII-thrombin association rate.


Subject(s)
Arginine/chemistry , Heparin Cofactor II/chemistry , Heparin Cofactor II/genetics , Heparin Cofactor II/metabolism , Humans , Kinetics , Mutation , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Structure-Activity Relationship , Thrombin/metabolism
18.
J Biol Chem ; 272(2): 888-93, 1997 Jan 10.
Article in English | MEDLINE | ID: mdl-8995378

ABSTRACT

A heparin cofactor II (HCII) mutant with an Arg substituted for Leu444 at the P1 position (L444R-rHCII) was previously found to have altered proteinase specificity (Derechin, V. M., Blinder, M. A., and Tollefsen, D. M. (1990) J. Biol. Chem. 265, 5623-5628). The present study characterizes the effect of glycosaminoglycans on the substrate versus inhibitor activity of L444R-rHCII. Heparin increased the stoichiometry of inhibition of L444R-rHCII with alpha-thrombin (compared with minus glycosaminoglycan) but decreased it with R93A,R97A,R101A-thrombin, a mutant thrombin that does not bind glycosaminoglycans. Dermatan sulfate decreased the stoichiometry of inhibition of L444R-rHCII with both proteinases. SDS-polyacrylamide gel electrophoresis showed no proteolysis of L444R-rHCII when incubated with R93A,R97A,R101A-thrombin in the absence or the presence of glycosaminoglycan or with alpha-thrombin and dermatan sulfate. In contrast, greater than 75% of the L444R-rHCII was converted to a lower molecular weight form when incubated with alpha-thrombin/heparin. A time course of alpha-thrombin inhibition by L444R-rHCII/heparin showed a rapid but transient inhibition with approximately 80% of the alpha-thrombin activity being regained after 6 h of incubation. In contrast, all other combinations of inhibitor, proteinase, and glycosaminoglycan resulted in complete and sustained inhibition of the proteinase. Heparin fragments of 8-20 polysaccharides in length rapidly accelerated L444R-rHCII inhibition of both alpha-thrombin and R93A,R97A,R101A-thrombin. After extended incubations, R93A,R97A,R101A-thrombin was completely inhibited by L444R-rHCII with all the heparin fragments, but approximately 30-50% of alpha-thrombin activity remained with fragments long enough to bridge HCII-thrombin. These results collectively indicate that ternary complex formation, mediated by heparin, increases L444R-rHCII inactivation by alpha-thrombin.


Subject(s)
Heparin Cofactor II/genetics , Heparin/pharmacology , Thrombin/metabolism , Heparin Cofactor II/antagonists & inhibitors , Humans , Kinetics , Mutagenesis , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/genetics
20.
Arterioscler Thromb Vasc Biol ; 16(9): 1138-46, 1996 Sep.
Article in English | MEDLINE | ID: mdl-8792767

ABSTRACT

Heparin cofactor II (HCII) is a potent thrombin inhibitor in the presence of heparin and dermatan sulfate, glycosaminoglycans that accelerate the inhibition reaction. HCII is postulated to be an extravascular thrombin inhibitor that is stimulated physiologically by dermatan sulfate proteoglycans. To understand how thrombin activity may be downregulated within the artery wall, cultured monkey aorta smooth muscle cell (SMC) proteoglycans were tested for their ability to accelerate thrombin inhibition by HCII. Early confluent SMC monolayers increased thrombin-HCII inhibition rates 2-fold to 4-fold compared with reactions in cell-free control wells (7.3 +/- 0.5 versus 2.7 +/- 0.2 x 10(4) mol.L-1.min-1, with and without SMCs, respectively; n = 7 experiments). Extracellular matrix obtained by cell monolayer removal also accelerated the thrombin-HCII inhibition reaction 3-fold to 5-fold. Rate increases were abolished by Polybrene or protamine sulfate. Pretreatment of monolayers with heparitinase I (and of extracellular matrix with HNO2) to degrade heparan sulfate blocked the thrombin-HCII inhibition rate increase. In contrast, pretreatment with chondroitinase ABC in the presence of proteinase inhibitors had no effect. "Pericellular" (cell surface- and extracellular matrix-derived) SMC heparan sulfate proteoglycans (HSPGs) were purified and fractionated by charge on DEAE-Sephacel. At a concentration of 1 microgram/mL hexuronic acid, high-charge HSPG stimulated a 7-fold thrombin-HCII inhibition rate increase relative to reactions without proteoglycan, whereas low-charge HSPG induced a 2-fold rate increase. In comparison, an 18-fold rate increase was observed with 1 microgram/mL dermatan sulfate proteoglycan purified from SMC culture media. These results indicate that SMC HSPG could contribute significantly to thrombin inhibition by HCII in the artery wall.


Subject(s)
Heparin Cofactor II/metabolism , Heparitin Sulfate/metabolism , Muscle, Smooth, Vascular/metabolism , Thrombin/metabolism , Animals , Aorta, Thoracic/metabolism , Cells, Cultured , Extracellular Matrix/metabolism , Heparin Cofactor II/pharmacology , Heparitin Sulfate/pharmacology , Macaca fascicularis , Thrombin/antagonists & inhibitors
SELECTION OF CITATIONS
SEARCH DETAIL
...