Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 18(8): e0284058, 2023.
Article in English | MEDLINE | ID: mdl-37561713

ABSTRACT

We report a waveguide-enhanced Raman spectroscopy (WERS) platform with alignment-tolerant under-chip grating input coupling. The demonstration is based on a 100-nm thick planar (slab) tantalum pentoxide (Ta2O5) waveguide and the use of benzyl alcohol (BnOH) and its deuterated form (d7- BnOH) as reference analytes. The use of grating couplers simplifies the WERS system by providing improved translational alignment tolerance, important for disposable chips, as well as contributing to improved Raman conversion efficiency. The use of non-volatile, non-toxic BnOH and d7-BnOH as chemical analytes results in easily observable shifts in the Raman vibration lines between the two forms, making them good candidates for calibrating Raman systems. The design and fabrication of the waveguide and grating couplers are described, and a discussion of further potential improvements in performance is presented.


Subject(s)
Spectrum Analysis, Raman , Benzyl Alcohol
2.
Opt Express ; 31(14): 22757-22765, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37475379

ABSTRACT

We present a simple and novel technique for achieving ultra-violet (UV) wavelength-tunable laser operation in the continuous-wave regime. Wavelength tunable operation in the near infrared is obtained from a compact two-mirror Alexandrite laser cavity by temperature tuning of the laser crystal. Second-harmonic-generation to the UV is then achieved at 376-379 nm and 384-386 nm by temperature tuning of a periodically-poled lithium-niobate (PPLN) waveguide. A maximum UV power of 1.3 mW from 185 mW infra-red pump throughput is obtained from a third-order PPLN Λ=6.1µm grating. These results show promising potential for simple and wavelength tunable access to wavelengths at 360-400 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...