Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cytokine ; 139: 155375, 2021 03.
Article in English | MEDLINE | ID: mdl-33383381

ABSTRACT

BACKGROUND: Increasing evidence suggests that interleukin-6 (IL-6) trans-signaling plays a critical role in the pathogenesis of diabetic retinopathy (DR). We have previously shown that activation of IL-6 trans-signaling induces barrier dysfunction in human retinal endothelial cells (HRECs). However, the molecular mechanisms underlying these effects are not clear. The purpose of this study was to discover global gene expression changes in HRECs following activation of IL-6 trans-signaling. METHODS: HRECs were treated with IL-6 and soluble IL-6R to activate IL-6 trans-signaling, and sgp130Fc treatment was used for IL-6 trans-signaling inhibition. RNA-Seq analyses were performed for global gene expression profiling. Differential expression was determined using DESeq2, and bioinformatic analyses were performed to associate the differentially expressed genes with biological functions and pathways. RESULTS: Our analyses revealed 445 differentially expressed genes (318 upregulated and 127 downregulated) in HRECs after IL-6 trans-signaling activation. We identified several novel genes not previously associated with IL-6 signaling or endothelial dysfunction. Leukocyte adhesion, diapedesis and chemokine signaling pathways are highly enriched in differentially expressed genes. Inhibition of IL-6 trans-signaling with sgp130Fc abrogated these changes, thus highlighting the therapeutic potential of this drug. CONCLUSIONS: This study identified significant gene expression changes caused by IL-6 trans-signaling activation in HRECs. Identification of such changes has the potential to uncover the precise molecular mechanisms of IL-6 trans-signaling mediated effects in the pathology of DR.


Subject(s)
Endothelial Cells/metabolism , Gene Expression/genetics , Interleukin-6/genetics , Retina/metabolism , Signal Transduction/genetics , Cells, Cultured , Down-Regulation/genetics , Gene Expression Profiling/methods , Humans , RNA-Seq/methods , Up-Regulation/genetics
2.
Proteomes ; 8(4)2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33217969

ABSTRACT

Aqueous humor (AH) is the fluid in the anterior and posterior chambers of the eye that contains proteins regulating ocular homeostasis. Analysis of aqueous humor proteome is challenging, mainly due to low sample volume and protein concentration. In this study, by utilizing state of the art technology, we performed Liquid-Chromatography Mass spectrometry (LC-MS/MS) analysis of 88 aqueous humor samples from subjects undergoing cataract surgery. A total of 2263 unique proteins were identified, which were sub-divided into four categories that were based on their detection in the number of samples: High (n = 152), Medium (n = 91), Low (n = 128), and Rare (n = 1892). A total of 243 proteins detected in at least 50% of the samples were considered as the constitutive proteome of human aqueous humor. The biological processes and pathways enriched in the AH proteins mainly include vesicle mediated transport, acute phase response signaling, LXR/RXR activation, complement system, and secretion. The enriched molecular functions are endopeptidase activity, and various binding functions, such as protein binding, lipid binding, and ion binding. Additionally, this study provides a novel insight into race specific differences in the AH proteome. A total of six proteins were upregulated, and five proteins were downregulated in African American subjects as compared to Caucasians.

SELECTION OF CITATIONS
SEARCH DETAIL
...