Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Microbiol ; 62(3): e0101123, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38363142

ABSTRACT

This study aimed to develop a method for standardized broth microdilution antimicrobial susceptibility testing (AST) of Avibacterium (Av.) paragallinarum, the causative agent of infectious coryza in chickens. For this, a total of 83 Av. paragallinarum isolates and strains were collected from 15 countries. To select unrelated isolates for method validation steps, macrorestriction analyses were performed with 15 Av. paragallinarum. The visible growth of Av. paragallinarum was examined in six broth media and growth curves were compiled. In Veterinary Fastidious Medium and cation-adjusted Mueller-Hinton broth (CAMHB) + 1% chicken serum + 0.0025% NADH (CAMHB + CS + NADH), visible growth of all isolates was detected and both media allowed adequate bacterial growth. Due to the better readability of Av. paragallinarum growth in microtiter plates, CAMHB + CS + NADH was chosen for AST. Repetitions of MIC testing with five epidemiologically unrelated isolates using a panel of 24 antimicrobial agents resulted in high essential MIC agreements of 96%-100% after 48-h incubation at 35 ± 2°C. Hence, the remaining 78 Av. paragallinarum were tested and demonstrated easily readable MICs with the proposed method. Differences in MICs were detected between isolates from different continents, with isolates from Africa showing lower MICs compared to isolates from America and Europe, which more often showed elevated MICs of aminoglycosides, quinolones, tetracyclines, and/or trimethoprim/sulfamethoxazole. PCR analyses of isolates used for method development revealed that isolates with elevated MICs of tetracyclines harbored the tetracycline resistance gene tet(B) but none of the other tested resistance genes were detected. Therefore, whole-genome sequencing data from 62 Av. paragallinarum were analyzed and revealed the presence of sequences showing nucleotide sequence identity to the genes aph(6)-Id, aph(3″)-Ib, blaTEM-1B, catA2, sul2, tet(B), tet(H), and mcr-like. Overall, the proposed method using CAMHB + CS + NADH for susceptibility testing with 48-h incubation time at 35 ± 2°C in ambient air was shown to be suitable for Av. paragallinarum. Due to a variety of resistance genes detected, the development of clinical breakpoints is highly recommended. IMPORTANCE: Avibacterium paragallinarum is an important pathogen in veterinary medicine that causes infectious coryza in chickens. Since antibiotics are often used for treatment and resistance of the pathogen is known, targeted therapy should be given after resistance testing of the pathogen. Unfortunately, there is currently no accepted method in standards that allows susceptibility testing of this fastidious pathogen. Therefore, we have worked out a method that allows harmonized susceptibility testing of the pathogen. The method meets the requirements of the CLSI and could be used by diagnostic laboratories.


Subject(s)
Anti-Infective Agents , Poultry Diseases , Animals , Chickens/microbiology , NAD , Anti-Bacterial Agents , Tetracycline , Microbial Sensitivity Tests , Poultry Diseases/microbiology
2.
J Clin Microbiol ; 61(8): e0190522, 2023 08 23.
Article in English | MEDLINE | ID: mdl-37439667

ABSTRACT

Mycoplasma bovis is a fastidious pathogen of cattle causing massive economic losses in the calf and dairy industries worldwide. Since there is no approved standard method for antimicrobial susceptibility testing (AST) of M. bovis, the Clinical and Laboratory Standards Institute has requested the development of a suitable method. Therefore, this study aimed at developing a method for harmonized broth microdilution AST of M. bovis. For this, 131 M. bovis field isolates and M. bovis strain DSM 22781T were collected and macrorestriction analysis was performed to select 15 epidemiologically unrelated M. bovis strains for method validation steps. To select a suitable broth for AST of M. bovis, growth determinations were performed using five media and growth curves were compiled. Then, susceptibility testing was performed considering the exact (precondition of five identical MICs) and essential (MIC mode, accepting a deviation of ±1 dilution step) MIC agreements to evaluate the reproducibility of MIC values using a panel of 16 antimicrobial agents. Subsequently, the remaining field isolates were tested and the suitability of quality control (QC) strains was assessed. Growth experiments showed that SP4 broth was the only one of the five media that yielded sufficient growth of M. bovis. Therefore, it was selected as the test medium for AST and homogeneous MIC values were obtained (exact and essential agreements of 36 to 100% and 92 to 100%, respectively). For all other isolates tested, easy-to-read MIC endpoints were determined with this medium. High overall MIC50 and/or MIC90 values were observed for aminoglycosides and macrolides, and some isolates showed elevated MICs of fluoroquinolones, gentamicin, and/or tiamulin. Since the MICs of four commonly used QC strains were partially not within their ranges, a 20-fold MIC testing of M. bovis DSM 22781T was performed and met the criteria for a new QC strain. For harmonized AST of M. bovis, SP4 broth seems to be suitable with an incubation time of 72 ± 2 h and further validation of M. bovis DSM 22781T as a future QC strain is recommended.


Subject(s)
Anti-Infective Agents , Mycoplasma bovis , Animals , Cattle , Reproducibility of Results , Anti-Bacterial Agents/pharmacology , Fluoroquinolones , Culture Media , Microbial Sensitivity Tests
3.
Microbiol Spectr ; 11(3): e0370222, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37125905

ABSTRACT

Bordetella avium causes a highly infectious upper respiratory tract disease in turkeys and other poultry with high economic losses. Considering the antimicrobial resistance crisis, bacteriophages (phages) may be an alternative approach for treating bacterial infections such as bordetellosis. Here, we describe seven B. avium phages, isolated from drinking water and feces from chicken and turkey farms. They showed strong bacteriolytic activity with a broad host range and used lipopolysaccharides (LPS) as a host receptor for their adsorption. All phages are myoviruses based on their structure observed by transmission electron microscopy. Genome sequence analyses revealed genome assembly sizes ranging from 39,087 to 43,144 bp. Their permutated genomes were organized colinearly, with a conserved module order, and were packed according to a predicted headful packing strategy. Notably, they contained genes encoding putative markers of lysogeny, indicative of temperate phages, despite their lytic phenotype. Further investigation revealed that the phages could indeed undergo a lysogenic life cycle with varying frequency. However, the lysogenic bacteria were still susceptible to superinfection with the same phages. This lack of stable superinfection immunity after lysogenization appears to be a characteristic feature of B. avium phages, which is favorable in terms of a potential therapeutic use of phages for the treatment of avian bordetellosis. IMPORTANCE To maintain the effectiveness of antibiotics over the long term, alternatives to treat infectious diseases are urgently needed. Therefore, phages have recently come back into focus as they can specifically infect and lyse bacteria and are naturally occurring. However, there is little information on phages that can infect pathogenic bacteria from animals, such as the causative agent of bordetellosis of poultry, B. avium. Therefore, in this study, B. avium phages were isolated and comprehensively characterized, including whole-genome analysis. Although phenotypically the phages were thought to undergo a lytic cycle, we demonstrated that they undergo a lysogenic phase, but that infection does not confer stable host superinfection immunity. These findings provide important information that could be relevant for potential biocontrol of avian bordetellosis by using phage therapy.


Subject(s)
Bacteriophages , Bordetella Infections , Bordetella avium , Superinfection , Animals , Bacteriophages/genetics , Lipopolysaccharides , Lysogeny , Bordetella Infections/microbiology , Bacteria
4.
J Clin Microbiol ; 60(8): e0041922, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35852371

ABSTRACT

Avibacterium (Av.) gallinarum is an opportunistic pathogen in poultry, which, however, has also been associated with human disease. There is currently no approved method for antimicrobial susceptibility testing of this pathogen, so this study aimed at developing a harmonized broth microdilution method for Av. gallinarum that is suitable for diagnostic laboratories. For this, the Av. gallinarum CCUG 12391T type strain and 42 field isolates were collected and their species was confirmed by using a species-specific PCR assay and biochemical reactions. To select epidemiologically unrelated isolates, ApaI macrorestriction analysis was performed. Preliminary growth experiments were conducted with six culture media, and based on the results, four media were selected to compile growth curves with four isolates. Independent repetitions of MIC determinations were then performed to evaluate the reproducibility of the values. Cation-adjusted Mueller-Hinton broth (CAMHB) was initially selected as broth medium, but did not show sufficient homogeneity of MICs. Therefore, CAMHB plus 1% chicken serum and 0.0025% NADH was selected and showed a good homogeneity of MICs after 20 h and 24 h of incubation at 35 ± 2°C. This was reflected in essential MIC agreements ranging between 96% and 100%. Testing of a larger Av. gallinarum collection (n = 43) revealed that easily readable MICs could be obtained for the type strain and all isolates. Some Av. gallinarum showed elevated MICs of enrofloxacin (n = 35), nalidixic acid (n = 35), penicillin (n = 2), tetracycline (n = 19), and/or trimethoprim-sulfamethoxazole (n = 1). By using PCR analyses, the following antimicrobial resistance genes were detected: blaTEM, dfrA14, sul2, tet(B), tet(H). The study demonstrated that the proposed medium is suitable for a harmonized broth microdilution susceptibility testing of Av. gallinarum with a recommended incubation time of 20 to 24 h.


Subject(s)
Anti-Bacterial Agents , Anti-Infective Agents , Anti-Bacterial Agents/pharmacology , Humans , Microbial Sensitivity Tests , Pasteurellaceae , Reproducibility of Results
5.
J Appl Microbiol ; 132(3): 1775-1787, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34564927

ABSTRACT

AIMS: In response to a request from the Clinical and Laboratory Standards Institute (CLSI), the objective of this study was to develop a harmonized method for broth microdilution susceptibility testing of Bordetella (B.) avium, the major causative agent of infectious coryza in poultry. METHODS AND RESULTS: To find a suitable test medium, growth curves with four epidemiologically unrelated B. avium isolates were created in cation-adjusted Mueller-Hinton broth (CAMHB), CAMHB + 2.5% lysed horse blood and veterinary fastidious medium. All isolates showed good growth in CAMHB, therefore MIC values were determined using this medium and the homogeneity of the values was determined. An essential MIC agreement of 99.7% was calculated. Testing of a larger strain collection (n = 49) for their susceptibility to 24 antimicrobials confirmed the suitability of the tested method and revealed some isolates with elevated MICs of florfenicol (n = 1), streptomycin (n = 2), tetracyclines (n = 5), and trimethoprim/sulfamethoxazole (n = 6). PCR assays detected the resistance genes aadA1, dfrB1, floR, sul1, sul2 and tet(A). CONCLUSIONS: The method used enables easy reading and a good reproducibility of MIC values for B. avium. SIGNIFICANCE AND IMPACT OF STUDY: Application of the tested method allows harmonized resistance testing of B. avium and identification of isolates with elevated MIC values.


Subject(s)
Anti-Infective Agents , Bordetella avium , Animals , Anti-Bacterial Agents/pharmacology , Horses , Microbial Sensitivity Tests , Reproducibility of Results
6.
Cells ; 8(10)2019 10 07.
Article in English | MEDLINE | ID: mdl-31591328

ABSTRACT

Bone marrow-derived fibrocytes (FC) represent a unique cell type, sharing features of both mesenchymal and hematopoietic cells. FC were shown to specifically infiltrate the injured liver and participate in fibrogenesis. Moreover, FC exert a variety of paracrine functions, thus possibly influencing the disease progression. However, the overall contribution of FC to liver fibrosis remains unclear. We aimed to study the effect of a specific FC depletion, utilizing a herpes simplex virus thymidine kinase (HSV-TK)/Valganciclovir suicide gene strategy. Fibrosis was induced by oral thioacetamide (TAA) administration in C57BL/6J mice. Hepatic hydroxyproline content was assessed for the primary readout. The HSV-TK model enabled the specific depletion of fibrocytes. Hepatic hydroxyproline content was significantly reduced as a result of the fibrocyte ablation (-7.8%; 95% CI: 0.7-14.8%; p = 0.033), denoting a reduced deposition of fibrillar collagens. Lower serum alanine transaminase levels (-20.9%; 95% CI: 0.4-36.9%; p = 0.049) indicate a mitigation of liver-specific cellular damage. A detailed mode of action, however, remains yet to be identified. The present study demonstrates a relevant functional contribution of fibrocytes to chronic toxic liver fibrosis, contradicting recent reports. Our results emphasize the need to thoroughly study the biology of fibrocytes in order to understand their importance for hepatic fibrogenesis.


Subject(s)
Hematopoietic Stem Cells/physiology , Liver Cirrhosis/pathology , Mesenchymal Stem Cells/physiology , Animals , Female , Liver Cirrhosis/chemically induced , Male , Mice , Mice, Inbred C57BL , Myofibroblasts/physiology , Thioacetamide
SELECTION OF CITATIONS
SEARCH DETAIL
...