Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(2): 024503, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35232133

ABSTRACT

A study investigating the physical properties and use of the SiAl composite Controlled Expansion 7 (CE7) for the packaging of silicon bolometric detectors for millimeter-wave astrophysical applications at cryogenic temperatures is presented. The existing interfaces to such detectors are typically made of either ductile metals or micro-machined silicon. As a composite of Si and Al, we find that CE7 exhibits properties of both in ways that may be advantageous for this application. This exploration of the physical properties of CE7 reveals: (a) superconductivity below a critical transition temperature, Tc ∼ 1.2 K; (b) a thermal contraction profile much closer to Si than metal substrates; (c) the relatively low thermal conductivity anticipated for a superconductor, which can be improved by Au-plating; and (d) the feasibility of machining mechanical features with tolerances of ∼25 µm. We further discuss the use of CE7 in the cosmology large angular scale surveyor telescope array, which deployed CE7 in several of its detector focal planes.

2.
Rev Sci Instrum ; 92(3): 035111, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33820033

ABSTRACT

Measuring the faint polarization signal of the cosmic microwave background (CMB) not only requires high optical throughput and instrument sensitivity but also control over systematic effects. Polarimetric cameras or receivers used in this setting often employ dielectric vacuum windows, filters, or lenses to appropriately prepare light for detection by cooled sensor arrays. These elements in the optical chain are typically designed to minimize reflective losses and hence improve sensitivity while minimizing potential imaging artifacts such as glint and ghosting. The Primordial Inflation Polarization ExploreR (PIPER) is a balloon-borne instrument designed to measure the polarization of the CMB radiation at the largest angular scales and characterize astrophysical dust foregrounds. PIPER's twin telescopes and detector systems are submerged in an open-aperture liquid helium bucket dewar. A fused-silica window anti-reflection (AR) coated with polytetrafluoroethylene is installed on the vacuum cryostat that houses the cryogenic detector arrays. Light passes from the skyward portions of the telescope to the detector arrays through this window, which utilizes an indium seal to prevent superfluid helium leaks into the vacuum cryostat volume. The AR coating implemented reduces reflections from each interface to <1% compared to ∼10% from an uncoated window surface. The AR coating procedure and room temperature optical measurements of the window are presented. The indium vacuum sealing process is also described in detail, and test results characterizing its integrity to superfluid helium leaks are provided.

3.
Rev Sci Instrum ; 88(10): 104501, 2017 Oct.
Article in English | MEDLINE | ID: mdl-29092463

ABSTRACT

We describe the design, fabrication, and validation of a cryogenically compatible quasioptical thermal source for characterization of detector arrays. The source is constructed using a graphite-loaded epoxy mixture that is molded into a tiled pyramidal structure. The mold is fabricated using a hardened steel template produced via a wire electron discharge machining process. The absorptive mixture is bonded to a copper backplate enabling thermalization of the entire structure and measurement of the source temperature. Measurements indicate that the reflectance of the source is <0.001 across a spectral band extending from 75 to 330 GHz.

4.
Appl Opt ; 51(28): 6824-30, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-23033098

ABSTRACT

We explore a free-space polarization modulator in which a variable phase is introduced between the right- and left-handed circular polarization components and used to rotate the linear polarization of the outgoing beam relative to that of the incoming beam. In this device, the polarization states are separated by a circular polarizer that consists of a quarter-wave plate in combination with a wire grid. A movable mirror is positioned behind and parallel to the circular polarizer. As the polarizer-mirror distance is changed, an incident linear polarization will be rotated through an angle that is proportional to the introduced phase delay. We demonstrate a prototype device that modulates Stokes Q and U over a 20% bandwidth, from 77 to 94 GHz.

5.
Appl Opt ; 51(2): 197-208, 2012 Jan 10.
Article in English | MEDLINE | ID: mdl-22270517

ABSTRACT

We investigate the polarization modulation properties of a variable-delay polarization modulator (VPM). The VPM modulates polarization via a variable separation between a polarizing grid and a parallel mirror. We find that in the limit where the wavelength is much larger than the diameter of the metal wires that comprise the grid, the phase delay derived from the geometric separation between the mirror and the grid is sufficient to characterize the device. However, outside of this range, additional parameters describing the polarizing grid geometry must be included to fully characterize the modulator response. In this paper, we report test results of a VPM at wavelengths of 350 µm and 3 mm. Electromagnetic simulations of wire grid polarizers were performed and are summarized using a simple circuit model that incorporates the loss and polarization properties of the device.

6.
J Opt Soc Am A Opt Image Sci Vis ; 27(5): 1219-31, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20448791

ABSTRACT

Far-infrared bolometric detectors are used extensively in ground-based and space-borne astronomy, and thus it is important to understand their optical behavior precisely. We have studied the intensity and polarization response of free-space bolometers and shown that when the size of the absorber is reduced below a wavelength, the response changes from being that of a classical optical detector to that of a few-mode antenna. We have calculated the modal content of the reception patterns and found that for any volumetric detector having a side length of less than a wavelength, three magnetic and three electric dipoles characterize the behavior. The size of the absorber merely determines the relative strengths of the contributions. The same formalism can be applied to thin-film absorbers, where the induced current is forced to flow in a plane. In this case, one magnetic and two electric dipoles characterize the behavior. The ability to model easily the intensity, polarization, and straylight characteristics of electrically small detectors will be of great value when designing high-performance polarimetric imaging arrays.

7.
Appl Opt ; 45(21): 5107-17, 2006 Jul 20.
Article in English | MEDLINE | ID: mdl-16826249

ABSTRACT

We develop the Jones and Mueller matrices for structures that allow control of the path length difference between two linear orthogonal polarizations and consider the effect of placing multiple devices in series. Specifically, we find that full polarization modulation (measurement of Stokes Q, U, and V) can be achieved by placing two such modulators in series if the relative angles of the beam-splitting grids with respect to the analyzer orientation are appropriately chosen. Such a device has several potential advantages over a spinning wave plate modulator for measuring astronomical polarization in the far infrared through millimeter: (i) The use of small, linear motions eliminates the need for cryogenic rotational bearings; (ii) the phase flexibility allows measurement of circular as well as linear polarization; and (iii) this architecture allows for both multiwavelength and broadband modulation. We also present initial laboratory results.

SELECTION OF CITATIONS
SEARCH DETAIL
...