Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 630(Pt A): 306-321, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36244103

ABSTRACT

Carbon dots (CDs) from glucose were synthesized using two of the most common bottom-up methods, namely, microwave assisted (MW) and hydrothermal carbonization (HT). Synthetic parameters such as reaction time, temperature, and precursor concentration were changed to study the effects of each parameter on CD size, structure, surface functionalities, charge, photoluminescence behavior, quantum yield, cytotoxicity, blood-brain barrier (BBB) crossing ability and bioimaging. A detailed analysis is performed to compare the structure and properties of the CDs synthesized in ten different conditions. We show that the synthesis route drastically changes the structure, properties, and related functions of glucose-derived CDs yielding two different subtypes of CDs. Surprisingly, CDs that was synthesized via HT method showed specific anticancer activity against a neuroblastoma cell line while being non-toxic towards healthy cell lines, indicating significant potential for therapeutic applications. CDs synthesized via MW crosses the BBB in zebrafish and rat models, and accumulates in neurons. CDs synthesized via MW method showed high biocompatibility and a great potential to be used for bioimaging applications in vitro and in vivo targeting neurons. Finally, a formation mechanism of CDs is proposed for both HT and MW synthesis routes.


Subject(s)
Neuroblastoma , Quantum Dots , Rats , Animals , Carbon/chemistry , Quantum Dots/chemistry , Microwaves , Nitrogen/chemistry , Zebrafish , Cell Line , Neuroblastoma/drug therapy , Glucose
2.
Molecules ; 26(21)2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34771082

ABSTRACT

Carbon nanomaterials (CNMs) have been extensively used as electrochemical sensing composites due to their interesting chemical, electronic, and mechanical properties giving rise to increased performance. Due to these materials' unknown long-term ecological fate, care must be given to make their use tractable. In this review, the design and use of carbon nanotubes (CNTs), graphene, and carbon dots (CDs) as electrochemical sensing electrocatalysts applied to the working electrode surface are surveyed for various biosensing applications. Graphene and CDs are readily biodegradable as compared to CNTs. Design elements for CNTs that carry over to graphene and CDs include Coulombic attraction of components and using O or N atoms that serve as tethering points for attaching electrocatalytically active nanoparticles (NPs) and/or other additives.


Subject(s)
Biosensing Techniques , Electrochemical Techniques , Graphite/chemistry , Nanotubes, Carbon/chemistry , Quantum Dots/chemistry , Electrodes , Metal Nanoparticles , Oxidation-Reduction , Surface Properties
3.
J Colloid Interface Sci ; 592: 485-497, 2021 Jun 15.
Article in English | MEDLINE | ID: mdl-33714764

ABSTRACT

Carbon dots (CDs) have been intensively studied since their discovery in 2004 because of their unique properties such as low toxicity, excellent biocompatibility, high photoluminescence (PL) and good water dispersibility. In this study metformin derived carbon dots (Met-CDs) were synthesized using a microwave assisted method. Met-CDs were meticulously characterized using ultra-violet spectroscopy (UV-vis), photoluminescence (PL), Fourier Transform Infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), atomic force (AFM) and transmission electron (TEM) microscopies. According to results of cytotoxicity studies, Met-CDs possess low-toxicity and excellent biocompatibility towards both non-tumor and tumor cell lines indicating that Met-CDs are outstanding candidates for living cell bioimaging studies. Furthermore, bioimaging studies have displayed that Met-CDs can penetrate the cell membrane and disperse throughout the cell structure including the nucleus and mitochondria. More specifically, Met-CDs tend to start localizing selectively inside the mitochondria of cancer cells, but not of non-tumor cells after 1 h of incubation. Finally, a zebrafish study confirmed that Met-CDs cross the blood-brain barrier (BBB) without the need of any other ligands. In summary, this study presents synthesis of Met-CDs which feature abilities such as mitochondrial and nucleus localizations along with BBB penetration.


Subject(s)
Metformin , Quantum Dots , Animals , Biomarkers , Blood-Brain Barrier , Carbon , Cell Survival , Metformin/pharmacology , Mitochondria , Zebrafish
4.
Nanomaterials (Basel) ; 10(8)2020 Aug 08.
Article in English | MEDLINE | ID: mdl-32784435

ABSTRACT

Carbon dots (C-dots) were facilely fabricated via a hydrothermal method and fully characterized. Our study shows that the as-synthesized C-dots are nontoxic, negatively charged spherical particles (average diameter 4.7 nm) with excellent water dispersion ability. Furthermore, the C-dots have a rich presence of surface functionalities such as hydroxyls and carboxyls as well as amines. The significance of the C-dots as highly efficient photocatalysts for rhodamine B (RhB) and methylene blue (MB) degradation was explored. The C-dots demonstrate excellent photocatalytic activity, achieving 100% of RhB and MB degradation within 170 min. The degradation rate constants for RhB and MB were 1.8 × 10-2 and 2.4 × 10-2 min-1, respectively. The photocatalytic degradation performances of the C-dots are comparable to those metal-based photocatalysts and generally better than previously reported C-dots photocatalysts. Collectively considering the excellent photocatalytic activity toward organic dye degradation, as well as the fact that they are facilely synthesized with no need of further doping, compositing, and tedious purification and separation, the C-dots fabricated in this work are demonstrated to be a promising alternative for pollutant degradation and environment protection.

5.
J Colloid Interface Sci ; 576: 412-425, 2020 Sep 15.
Article in English | MEDLINE | ID: mdl-32460101

ABSTRACT

As a promising drug nanocarrier, carbon dots (CDs) have exhibited many excellent properties. However, some properties such as bone targeting and crossing the blood-brain barrier (BBB) only apply to a certain CD preparation with limited drug loading capacity. Therefore, it is significant to conjugate distinct CDs to centralize many unique properties on the novel drug nanocarrier. Considering that CDs have abundant and tunable surface functionalities, in this study, a direct conjugation was initiated between two distinct CD models, black CDs (B-CDs) and gel-like CDs (G-CDs) via an amidation reaction. As a result of conjugation at a mass ratio of 5:3 (B-CDs to G-CDs) and a two-step purification process, the conjugate, black-gel CDs (B-G CDs) (5:3) inherited functionalities from both CDs and obtained an enhanced thermostability, aqueous stability, red-shifted photoluminescence (PL) emission, and a figure-eight shape with a width and length of 3 and 6 nm, respectively. In addition, the necessity of high surface primary amine (NH2) content in the CD conjugation was highlighted by replacing G-CDs with other CDs with lower surface NH2 content. Meanwhile, the carboxyl groups (COOH) on G-CDs were not enough to trigger self-conjugation between G-CDs. Moreover, the drug loading capacity was enhanced by 54.5% from B-CDs to B-G CDs (5:3). Furthermore, when the mass ratio of B-CDs to G-CDs was decreased from 5:30, 5:100 to 5:300, the obtained nanostructures revealed a great potential of CDs as Lego-like building blocks. Also, bioimaging of zebrafish demonstrated that various B-G CDs exhibited properties of both bone targeting and crossing the BBB, which are specific properties of B-CDs and G-CDs, respectively.


Subject(s)
Carbon , Pharmaceutical Preparations , Animals , Blood-Brain Barrier , Physical Phenomena , Zebrafish
6.
Int J Mol Sci ; 21(7)2020 Mar 28.
Article in English | MEDLINE | ID: mdl-32231169

ABSTRACT

The use of nanomaterial-based products continues to grow with advancing technology. Understanding the potential toxicity of nanoparticles (NPs) is important to ensure that products containing them do not impose harmful effects to human or environmental health. In this study, we evaluated the comparative cytotoxicity between nickel oxide (NiO) and nickel hydroxide (Ni(OH)2) in human bronchoalveolar carcinoma (A549) and human hepatocellular carcinoma (HepG2) cell lines. Cellular viability studies revealed cell line-specific cytotoxicity in which nickel NPs were toxic to A549 cells but relatively nontoxic to HepG2 cells. Time-, concentration-, and particle-specific cytotoxicity was observed in A549 cells. NP-induced oxidative stress triggered dissipation of mitochondrial membrane potential and induction of caspase-3 enzyme activity. The subsequent apoptotic events led to reduction in cell number. In addition to cell death, suppression of cell proliferation played an essential role in regulating cell number. Collectively, the observed cell viability is a function of cell death and suppression of proliferation. Physical and chemical properties of NPs such as total surface area and metal dissolution are in agreement with the observed differential cytotoxicity. Understanding the properties of NPs is essential in informing the design of safer materials.


Subject(s)
Cell Death/drug effects , Hydroxides/toxicity , Nanoparticles/toxicity , Nickel/toxicity , A549 Cells , Cell Proliferation/drug effects , Cell Survival/drug effects , Hep G2 Cells , Humans , Oxidative Stress/drug effects
7.
Anal Chem ; 91(16): 10573-10581, 2019 08 20.
Article in English | MEDLINE | ID: mdl-31369241

ABSTRACT

A Prussian Blue (PB) zinc oxide carbon nanotube sensing composite was developed for the rapid assaying of H2O2 generated from BT20 and 4T1 breast cancer cells, important for elucidating mechanisms governing apoptosis of these cell lines. The combination of H2O2's transient nature along with matrix effects makes monitoring this molecule in biological samples a challenge. The standard addition method (SAM) was coupled with chronoamperometric sensing (CA) to overcome these obstacles. An electrocatalyst composite consisting of refluxed zinc oxide nanoparticles (NPs) tethered to carboxylic acid-functionalized multiwalled carbon nanotubes (ZnO/COOH-MWNTs) was electrostatically attached to PB for signal enhancement. Optimization of the sensor was achieved via adjusting solution pH and stirring time to optimize PB electrostatic attachment to ZnO/COOH-MWNTs prior to its deposition onto the working glassy carbon electrode (GCE) surface. CA SAM showed the ability to accurately measure H2O2 within the 1-21 µM range, suitable for monitoring cancer cell line apoptosis resistance scenarios and offering analytical advantages over standard enzyme-linked immunosorbent assays (ELISA) for rapid, matrix-effect-free analysis.


Subject(s)
Breast Neoplasms/chemistry , Ferrocyanides/chemistry , Hydrogen Peroxide/analysis , Nanotubes, Carbon/chemistry , Zinc Oxide/chemistry , Animals , Breast Neoplasms/diagnostic imaging , Electrodes , Female , Humans , Mice , Tumor Cells, Cultured
8.
Langmuir ; 35(20): 6708-6718, 2019 05 21.
Article in English | MEDLINE | ID: mdl-31039318

ABSTRACT

Carbon dots (CDs) are zero-dimensional carbon-based spherical nanoparticles with diameters less than 10 nm. Here, we report for the first time CDs forming stable Langmuir monolayers at the air-subphase interface. Langmuir monolayers are of great interest both fundamentally to study the interactions at the interfaces and for many applications such as the development of sensors. However, CDs usually do not form Langmuir monolayers because of their highly hydrophilic nature. In this study, amphiphilic CDs were prepared through hydrothermal carbonization using saccharides as the precursors. The surface chemistry behavior and optical properties of CDs at the air-subphase interface were studied. CDs derived from saccharides consistently formed stable Langmuir monolayers which show all essential phases, namely, gas, liquid-expanded, liquid-condensed, and solid phases. The compression-decompression cycle method showed minimum hysteresis (4.3%), confirming the retaining capacity of the CDs as a monolayer. Limiting CD areas from surface pressure-area isotherm at the air-subphase interface were used to calculate the average diameter of the CDs at the air-subphase interface. UV/vis absorption spectra of CDs dispersed in water and in Langmuir monolayers had the same bands in the UV region. The intensity of the UV/vis absorption increases with increasing surface pressure at the air-subphase interface. Interestingly, photoluminescence (PL) of the Langmuir monolayer of CDs was excitation-independent, whereas the same CDs had excitation-dependent PL when dispersed in water.


Subject(s)
Carbon/chemistry , Membranes, Artificial , Models, Chemical
9.
Colloids Surf B Biointerfaces ; 176: 488-493, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30690384

ABSTRACT

Drug traversal across the blood-brain barrier has come under increasing scrutiny recently, particularly concerning the treatment of sicknesses, such as brain cancer and Alzheimer's disease. Most therapies and medicines are limited due to their inability to cross this barrier, reducing treatment options for maladies affecting the brain. Carbon dots show promise as drug carriers, but they experience the same limitations regarding crossing the blood-brain barrier as many small molecules do. If carbon dots can be prepared from a precursor that can cross the blood-brain barrier, there is a chance that the remaining original precursor molecule can attach to the carbon dot surface and lead the system into the brain. Herein, tryptophan carbon dots were synthesized with the strategy of using tryptophan as an amino acid for crossing the blood-brain barrier via LAT1 transporter-mediated endocytosis. Two types of carbon dots were synthesized using tryptophan and two different nitrogen dopants: urea and 1,2-ethylenediamine. Carbon dots made using these precursors show excitation wavelength-dependent emission, low toxicity, and have been observed inside the central nervous system of zebrafish (Danio rerio). The proposed mechanism for these carbon dots abilities to cross the blood-brain barrier concerns residual tryptophan molecules which attach to the carbon dots surface, enabling them to be recognized by the LAT1 transporter. The role of carbon dots for transport open promising avenues for drug delivery and imaging in the brain.


Subject(s)
Blood-Brain Barrier/metabolism , Carbon/metabolism , Tryptophan/metabolism , Animals , Animals, Genetically Modified , Ethylenediamines/metabolism , Spectrum Analysis , Zebrafish
10.
Appl Catal B ; 248: 157-166, 2019 Jul 05.
Article in English | MEDLINE | ID: mdl-32831482

ABSTRACT

Carbon dots (CDs) were synthesized by a microwave-mediated method and separated by size exclusion chromatography into three different size fractions. There was no correlation of the size with photoluminescence (PL) emission wavelength, which shows that the PL mechanism is not quantum-size dependent. UV/vis absorption and diffuse reflectance spectroscopies showed that the light absorption properties as well as the band gap of the CDs changed with the size of the particle. The combination of FTIR and XPS measurements revealed the composition on the surface of each fraction. The three CDs fractions were separately used in the photocatalytic degradation of organic dyes under simulated sunlight irradiation. The catalytic activity of the as-prepared CDs was found to increase as the size of the particles decreased. Complete degradation of both rhodamine B (RhB) and methylene blue (MB) was achieved in 150 min by the 2-nm CDs. The scavenger studies showed that the holes and superoxide radicals are the main species involved in the photocatalytic degradation of the dye by the 2-nm CDs. These CDs displayed high stability in the degradation of organic dyes for multiple cycles. The 2-nm CDs displayed promising photocatalytic degradation of p-nitrophenol (PNP) . These results demonstrate for the first time the application of bare carbon dots in the degradation of environmental contaminants.

11.
Bioconjug Chem ; 30(1): 111-123, 2019 01 16.
Article in English | MEDLINE | ID: mdl-30525487

ABSTRACT

In contrast to the recent immense attention in carbon nitride quantum dots (CNQDs) as a heteroatom-doped carbon quantum dot (CQD), their biomedical applications have not been thoroughly investigated. Targeted cancer therapy is a prominently researched area in the biomedical field. Here, the ability of CNQDs as a selective bioimaging nanomaterial was investigated to assist targeted cancer therapy. CNQDs were first synthesized using four different precursor sets involving urea derivatives, and the characteristics were compared to select the best candidate material for bioapplications. Characterization techniques such as UV-vis, luminescence, X-ray photoelectron spectroscopy, nuclear magnetic resonance spectroscopy, and transmission electron microscopy were used. These CNQDs were analyzed in in vitro studies of bioimaging and labeling using pediatric glioma cells (SJGBM2) for possible selective biolabeling and nanodistribution inside the cell membrane. The in vitro cellular studies were conducted under long-wavelength emission without the interference of blue autofluorescence. Thus, excitation-dependent emission of CNQDs was proved to be advantageous. Importantly, CNQDs selectively entered SJGBM2 tumor cells, while it did not disperse into normal human embryonic kidney cells (HEK293). The distribution studies in the cell cytoplasm indicated that CNQDs dispersed into lysosomes within approximately 6 h after the incubation. The CNQDs exhibited great potential as a possible nanomaterial in selective bioimaging and drug delivery for targeted cancer therapy.


Subject(s)
Diagnostic Imaging/instrumentation , Nitriles/chemistry , Quantum Dots/chemistry , Animals , Cell Line, Tumor , Cell Survival/drug effects , Embryo, Nonmammalian/drug effects , HEK293 Cells , Humans , Luminescence , Nitriles/pharmacokinetics , Nitriles/pharmacology , Sea Urchins/embryology , Tissue Distribution
12.
Chemphyschem ; 19(19): 2589-2597, 2018 10 05.
Article in English | MEDLINE | ID: mdl-29856902

ABSTRACT

Photoluminescent carbon dots (CDs) fractions have been isolated from a gel-like material (GM), which was synthesized using a convenient one-step solvothermal route. In terms of purification, size exclusion chromatography (SEC) and dialysis were compared with acetone wash, which revealed the advantage of acetone wash. The pre-purified GM with acetone wash (A-GM) was further isolated by the reversed-phase preparative thin layer chromatography (TLC) with acetonitrile-water mixture (7 : 3; va /vw ) as the developing solvent. As a result, there were four photoluminescent bands on the TLC plate, which indicated the presence of four photoluminescent fractions. Detailed characterization measurements such as UV/Vis absorption, fluorescence emission, attenuated total reflection Fourier-transform infrared spectroscopy, X-ray photoelectron spectroscopy, zeta potential, dynamic light scattering, atomic force microscopy, and TEM measurements were performed on all fractions to analyze their heterogeneous optical, structural, electrical, and morphological properties. Considering the comprehensive analysis, all isolated fractions were CDs. In addition, excitation wavelength-independent CDs were obtained with a mean size of 2.5 nm and high quantum yield (55 %). Furthermore, the study demonstrates that the excitation wavelength-dependent photoluminescence of GM could result from the mixture of different surface states of each CD fraction rather than multiple surface states of uniform CDs nanoparticles.

13.
Electroanalysis ; 30(5)2018.
Article in English | MEDLINE | ID: mdl-32999580

ABSTRACT

Acetaminophen (APAP) is an antipyretic, analgesic agent, the overdose of which during medical treatment poses a risk for liver failure. Hence, it is important to develop methods to monitor physiological APAP levels to avoid APAP. Here, we report an efficient, selective electrochemical APAP sensor made from depositing silicon nanowires (SiNWs) onto glassy carbon electrodes (GCEs). Electrocatalytic activity of the SiNW/GCE sensors was monitored under varying pH and concentrations of APAP using cyclic voltammetry (CV) and chronoamperometry (CA). CV of the SiNWs at 0.5 to 13 mmol dm-3 APAP concentrations was used to determine the oxidation and reduction potential of APAP. The selective detection of APAP was then demonstrated using CA at +0.568 V vs Ag/AgCl, where APAP is fully oxidized, in the 0.01 to 3 mmol dm-3 concentration range with potentially-interfering species. The SiNW sensor has the ability to detect APAP well within the detection limits for APAP toxicity, showing promise as a practical biosensor.

14.
RSC Adv ; 8(16): 8929-8936, 2018 Feb 23.
Article in English | MEDLINE | ID: mdl-35539839

ABSTRACT

Na2Ti6O13 (NTO) has recently been reported for lithium ion storage and showed very promising results. In this work, we report substantially enhanced rate capability in NTO nanowires by Ti(iii) self-doping and carbon-coating. Ti(iii) doping and carbon coating were found to work in synergy to increase the electrochemical performances of the material. For 300 cycles at 1C (1C = 200 mA g-1) the charge capacity of the electrode is 206 mA h g-1, much higher than that (89 mA h g-1) of the pristine NTO electrode. For 500 cycles at 5C the electrode can still deliver a charge capacity of 180.5 mA h g-1 with a high coulombic efficiency of 99%. At 20C the capacity of the electrode is 2.6 times that of the pristine NTO. These results clearly demonstrate that the Ti(iii) self-doping and uniform carbon coating significantly enhanced the kinetic processes in the NTO nanowire crystal, making it possible for fast charge and discharge in Li-ion batteries.

15.
Chemphyschem ; 18(8): 890-897, 2017 Apr 19.
Article in English | MEDLINE | ID: mdl-28170162

ABSTRACT

Highly photoluminescent gel-like carbon dots (G-CDs) were successfully synthesized for the first time by a rapid one-step solvothermal synthesis approach with citric acid and 1,2-ethylenediamine as the precursors. Their gel-like nature was revealed by the Tyndall and coagulation effects, which were elucidated by a negative ζ potential value. The influences of temperature on the properties and sizes of these G-CDs were analyzed, and the best method for a maximum quantum yield was identified. The resulting products emitted blue photoluminescence under UV light (λ=365 nm) and a gradient of color under regular light. In addition, the UV/Vis absorption and fluorescence emission spectra of the G-CDs indicated that those synthesized at 160 °C exhibited the highest fluorescence quantum yield (33 %). Atomic force microscopy and transmission electron microscopy measurements were performed, and a higher temperature of formation resulted in smaller G-CDs. Furthermore, band shifts in the UV/Vis and fluorescence spectra and sequential changes in the quantum yield values and ζ potentials in addition to elemental compositional changes as determined by X-ray photoelectron spectroscopy were monitored throughout the formation process of the G-CDs. As to applications, G-CDs were prepared as an invisible ink for printers, which exhibited the applicability of G-CDs in daily life and military activities.

16.
Chem Biol Interact ; 206(2): 319-26, 2013 Nov 25.
Article in English | MEDLINE | ID: mdl-24120544

ABSTRACT

A clear understanding of physicochemical factors governing nanoparticle toxicity is still in its infancy. We used a systematic approach to delineate physicochemical properties of nanoparticles that govern cytotoxicity. The cytotoxicity of fourth period metal oxide nanoparticles (NPs): TiO2, Cr2O3, Mn2O3, Fe2O3, NiO, CuO, and ZnO increases with the atomic number of the transition metal oxide. This trend was not cell-type specific, as observed in non-transformed human lung cells (BEAS-2B) and human bronchoalveolar carcinoma-derived cells (A549). Addition of NPs to the cell culture medium did not significantly alter pH. Physiochemical properties were assessed to discover the determinants of cytotoxicity: (1) point-of-zero charge (PZC) (i.e., isoelectric point) described the surface charge of NPs in cytosolic and lysosomal compartments; (2) relative number of available binding sites on the NP surface quantified by X-ray photoelectron spectroscopy was used to estimate the probability of biomolecular interactions on the particle surface; (3) band-gap energy measurements to predict electron abstraction from NPs which might lead to oxidative stress and subsequent cell death; and (4) ion dissolution. Our results indicate that cytotoxicity is a function of particle surface charge, the relative number of available surface binding sites, and metal ion dissolution from NPs. These findings provide a physicochemical basis for both risk assessment and the design of safer nanomaterials.


Subject(s)
Apoptosis/drug effects , Metal Nanoparticles/toxicity , Transition Elements/chemistry , Binding Sites , Cell Line, Tumor , Cell Survival/drug effects , Humans , Hydrogen-Ion Concentration , Metal Nanoparticles/chemistry , Oxides/chemistry , Surface Properties
17.
Electrochim Acta ; 97: 99-104, 2013 May 01.
Article in English | MEDLINE | ID: mdl-25684785

ABSTRACT

We describe the synthesis of zinc oxide (ZnO) nanoparticles and demonstrate their attachment to multiwalled carbon tubes, resulting in a composite with a unique synergistic effect. Morphology and size of ZnO nanostructures were controlled using hydrothermal synthesis, varying the hydrothermal treatment temperature, prior to attachment to carboxylic acid functionalized multi-walled carbon nanotubes for sensing applications. A strong dependence of electrocatalytic activity on nanosized ZnO shape was shown. High activity for H2O2 reduction was achieved when nanocomposite precursors with a roughly semi-spherical morphology (no needle-like particles present) formed at 90 °C. A 2.4-fold increase in cyclic voltammetry current accompanied by decrease in overpotential from the composites made from the nanosized, needle-like-free ZnO shapes was observed as compared to those composites produced from needle-like shaped ZnO. Electrocatalytic activity varied with pH, maximizing at pH 7.4. A stable, linear response for H2O2 concentrations was observed in the 1-20 mM concentration range.

18.
J Colloid Interface Sci ; 371(1): 144-9, 2012 Apr 01.
Article in English | MEDLINE | ID: mdl-22284448

ABSTRACT

Using antioxidants is an important means of treating lead poisoning. Prior in vivo studies showed marked differences between various chelator antioxidants in their ability to decrease both blood Pb(II) levels and oxidative stress resulting from lead poisoning. The comparative abilities of NAC and NACA to Pb(II) were studied in vitro, for the first time, to examine the role of the -OH/-NH(2) functional group in antioxidant binding behavior. To assay the antioxidant-divalent metal interaction, the antioxidants were probed as solid surfaces, adsorbing Pb(II) onto them. Surface characterization was carried out using X-ray photoelectron spectroscopy (XPS) analysis to quantify Pb(II) in the resulting adducts. XPS of the Pb 4f orbitals showed that more Pb(II) was chemically bound to NACA than NAC. In addition, the antioxidant surfaces probed via point-of-zero charge (PZC) measurements of NAC and NACA were obtained to gain further insight into the Pb-NAC and Pb-NACA binding, showing that Coulombic interactions played a partial role in facilitating complex formation. The data correlated well with solution analysis of metal-ligand complexation. UV-vis spectroscopy was used to probe complexation behavior. NACA was found to have the higher binding affinity as shown by free Pb(II) available in the solution after complexation from HPLC data. Electrospray ionization mass spectrometry (ESI-MS) was applied to delineate the structures of Pb-antioxidant complexes. Experimental results were further supported by density functional theory (DFT) calculations of supermolecular interaction energies (E(inter)) showing a greater interaction of Pb(II) with NACA than NAC.


Subject(s)
Acetylcysteine/analogs & derivatives , Acetylcysteine/metabolism , Free Radical Scavengers/pharmacology , Lead Poisoning/drug therapy , Lead/metabolism , Acetylcysteine/chemistry , Acetylcysteine/pharmacology , Chromatography, High Pressure Liquid , Free Radical Scavengers/chemistry , Lead/chemistry , Photoelectron Spectroscopy , Spectrometry, Mass, Electrospray Ionization
19.
J Hazard Mater ; 171(1-3): 774-9, 2009 Nov 15.
Article in English | MEDLINE | ID: mdl-19616377

ABSTRACT

Fluoride adsorption onto granular ferric hydroxide (GFH) was investigated using batch methods, under various ionic strength, pH, surface loading, and major co-existing anion conditions. Adsorption of fluoride on GFH included an initial fast adsorption phase followed by a slow adsorption phase. Within the pH range of 2-11, fluoride adsorption equilibrium was not affected by ionic strength, but was significantly affected by pH. Maximum adsorption was achieved in the pH range of 3-6.5. Under the same pH condition, fluoride adsorption followed the Freundlich isotherm, indicating that the GFH surface was heterogeneous. X-ray photoelectron spectroscopy (XPS) and attenuated total reflection-infrared (ATR-IR) spectroscopy data showed evidence for fluoride sorption on the GFH surface via inner-sphere complexation accompanying increased hydrogen bonding and surface hydroxylation. Major anions, including phosphate, bicarbonate, sulfate, and chloride, reduced fluoride adsorption in the following order: H(2)PO(4)(-)>HCO(3)(-)>SO(4)(2-)>Cl(-).


Subject(s)
Ferric Compounds/chemistry , Fluorides/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Anions , Hydrogen-Ion Concentration , Ions , Spectrophotometry, Infrared/methods , Surface Properties , Time Factors , Water Pollutants, Chemical/analysis , Water Supply
20.
Chemosphere ; 72(3): 381-8, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18396313

ABSTRACT

Arsenic (As) poses a significant water quality problem and challenge for the environmental engineers and scientists in the world. The large volume of coal fly ash produced around the world is a potentially significant anthropogenic source of arsenic. Currently the leaching behavior of arsenic from fly ash is not well understood. Batch methods were used in this study to investigate arsenic leaching using a raw ash, and arsenic adsorption using a clean, washed ash. Experimental results indicated that pH had a significant effect on arsenic leaching or adsorption. Between pH 3 and 7, less arsenic was in the dissolved phase. When pH was less than 3 or greater than 7, increasing amounts of arsenic were leached or desorbed from fly ash. The leaching and adsorption behavior of arsenic was interpreted with the speciation of surface sites and arsenic. In a new approach, a speciation-based model was developed to quantify the arsenic adsorption as a function of pH and surface acidity parameters. This work is important in offering insight into the leaching mechanism of arsenic from coal fly ash, and providing a robust model based upon specific, measurable parameters to quantify arsenic adsorption by other solid media in addition to fly ash.


Subject(s)
Air Pollutants/chemistry , Arsenic/chemistry , Carbon/chemistry , Particulate Matter/chemistry , Adsorption , Coal Ash , Environmental Monitoring/methods , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...