Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
2.
NPJ Digit Med ; 3: 61, 2020.
Article in English | MEDLINE | ID: mdl-32352039

ABSTRACT

Pulmonary embolism (PE) is a life-threatening clinical problem and computed tomography pulmonary angiography (CTPA) is the gold standard for diagnosis. Prompt diagnosis and immediate treatment are critical to avoid high morbidity and mortality rates, yet PE remains among the diagnoses most frequently missed or delayed. In this study, we developed a deep learning model-PENet, to automatically detect PE on volumetric CTPA scans as an end-to-end solution for this purpose. The PENet is a 77-layer 3D convolutional neural network (CNN) pretrained on the Kinetics-600 dataset and fine-tuned on a retrospective CTPA dataset collected from a single academic institution. The PENet model performance was evaluated in detecting PE on data from two different institutions: one as a hold-out dataset from the same institution as the training data and a second collected from an external institution to evaluate model generalizability to an unrelated population dataset. PENet achieved an AUROC of 0.84 [0.82-0.87] on detecting PE on the hold out internal test set and 0.85 [0.81-0.88] on external dataset. PENet also outperformed current state-of-the-art 3D CNN models. The results represent successful application of an end-to-end 3D CNN model for the complex task of PE diagnosis without requiring computationally intensive and time consuming preprocessing and demonstrates sustained performance on data from an external institution. Our model could be applied as a triage tool to automatically identify clinically important PEs allowing for prioritization for diagnostic radiology interpretation and improved care pathways via more efficient diagnosis.

3.
Sci Rep ; 10(1): 3958, 2020 03 03.
Article in English | MEDLINE | ID: mdl-32127625

ABSTRACT

The development of deep learning algorithms for complex tasks in digital medicine has relied on the availability of large labeled training datasets, usually containing hundreds of thousands of examples. The purpose of this study was to develop a 3D deep learning model, AppendiXNet, to detect appendicitis, one of the most common life-threatening abdominal emergencies, using a small training dataset of less than 500 training CT exams. We explored whether pretraining the model on a large collection of natural videos would improve the performance of the model over training the model from scratch. AppendiXNet was pretrained on a large collection of YouTube videos called Kinetics, consisting of approximately 500,000 video clips and annotated for one of 600 human action classes, and then fine-tuned on a small dataset of 438 CT scans annotated for appendicitis. We found that pretraining the 3D model on natural videos significantly improved the performance of the model from an AUC of 0.724 (95% CI 0.625, 0.823) to 0.810 (95% CI 0.725, 0.895). The application of deep learning to detect abnormalities on CT examinations using video pretraining could generalize effectively to other challenging cross-sectional medical imaging tasks when training data is limited.


Subject(s)
Algorithms , Appendicitis/diagnosis , Appendicitis/metabolism , Deep Learning , Adult , Cross-Sectional Studies , Female , Humans , Male , Middle Aged
4.
JAMA Netw Open ; 2(6): e195600, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31173130

ABSTRACT

Importance: Deep learning has the potential to augment clinician performance in medical imaging interpretation and reduce time to diagnosis through automated segmentation. Few studies to date have explored this topic. Objective: To develop and apply a neural network segmentation model (the HeadXNet model) capable of generating precise voxel-by-voxel predictions of intracranial aneurysms on head computed tomographic angiography (CTA) imaging to augment clinicians' intracranial aneurysm diagnostic performance. Design, Setting, and Participants: In this diagnostic study, a 3-dimensional convolutional neural network architecture was developed using a training set of 611 head CTA examinations to generate aneurysm segmentations. Segmentation outputs from this support model on a test set of 115 examinations were provided to clinicians. Between August 13, 2018, and October 4, 2018, 8 clinicians diagnosed the presence of aneurysm on the test set, both with and without model augmentation, in a crossover design using randomized order and a 14-day washout period. Head and neck examinations performed between January 3, 2003, and May 31, 2017, at a single academic medical center were used to train, validate, and test the model. Examinations positive for aneurysm had at least 1 clinically significant, nonruptured intracranial aneurysm. Examinations with hemorrhage, ruptured aneurysm, posttraumatic or infectious pseudoaneurysm, arteriovenous malformation, surgical clips, coils, catheters, or other surgical hardware were excluded. All other CTA examinations were considered controls. Main Outcomes and Measures: Sensitivity, specificity, accuracy, time, and interrater agreement were measured. Metrics for clinician performance with and without model augmentation were compared. Results: The data set contained 818 examinations from 662 unique patients with 328 CTA examinations (40.1%) containing at least 1 intracranial aneurysm and 490 examinations (59.9%) without intracranial aneurysms. The 8 clinicians reading the test set ranged in experience from 2 to 12 years. Augmenting clinicians with artificial intelligence-produced segmentation predictions resulted in clinicians achieving statistically significant improvements in sensitivity, accuracy, and interrater agreement when compared with no augmentation. The clinicians' mean sensitivity increased by 0.059 (95% CI, 0.028-0.091; adjusted P = .01), mean accuracy increased by 0.038 (95% CI, 0.014-0.062; adjusted P = .02), and mean interrater agreement (Fleiss κ) increased by 0.060, from 0.799 to 0.859 (adjusted P = .05). There was no statistically significant change in mean specificity (0.016; 95% CI, -0.010 to 0.041; adjusted P = .16) and time to diagnosis (5.71 seconds; 95% CI, 7.22-18.63 seconds; adjusted P = .19). Conclusions and Relevance: The deep learning model developed successfully detected clinically significant intracranial aneurysms on CTA. This suggests that integration of an artificial intelligence-assisted diagnostic model may augment clinician performance with dependable and accurate predictions and thereby optimize patient care.


Subject(s)
Deep Learning , Intracranial Aneurysm/diagnosis , Clinical Competence/standards , Computer Simulation , Cross-Over Studies , Diagnosis, Computer-Assisted/methods , Female , Humans , Male , Middle Aged , Neurologic Examination/methods , Neurologists/standards , Retrospective Studies
5.
AMIA Annu Symp Proc ; : 556-60, 2008 Nov 06.
Article in English | MEDLINE | ID: mdl-18998955

ABSTRACT

The ability to model, share and re-use value sets across medical information systems is an important requirement. However, generating value sets semi-automatically from a terminology service is an unresolved issue, in part due to the lack of linkage to clinical context patterns that provide the constraints in defining a concept domain and invocation of value sets extraction. Towards this goal, we develop and evaluate an approach for context-driven automatic value sets extraction based on a formal terminology model. The crux of the technique is to identify and define the context patterns from various domains of discourse and leverage them for value set extraction using two complementary ideas based on (i) local terms provided by the Subject Matter Experts (extensional) and (ii) Semantic definition of the concepts in coding schemes (intensional). A prototype was implemented based on SNOMED CT rendered in the LexGrid terminology model and a preliminary evaluation is presented.


Subject(s)
Artificial Intelligence , Information Storage and Retrieval/methods , Medical Records Systems, Computerized , Natural Language Processing , Pattern Recognition, Automated/methods , Subject Headings , Algorithms , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...