Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 4(6): e6022, 2009 Jun 29.
Article in English | MEDLINE | ID: mdl-19562078

ABSTRACT

BACKGROUND: The impact of scientific publications has traditionally been expressed in terms of citation counts. However, scientific activity has moved online over the past decade. To better capture scientific impact in the digital era, a variety of new impact measures has been proposed on the basis of social network analysis and usage log data. Here we investigate how these new measures relate to each other, and how accurately and completely they express scientific impact. METHODOLOGY: We performed a principal component analysis of the rankings produced by 39 existing and proposed measures of scholarly impact that were calculated on the basis of both citation and usage log data. CONCLUSIONS: Our results indicate that the notion of scientific impact is a multi-dimensional construct that can not be adequately measured by any single indicator, although some measures are more suitable than others. The commonly used citation Impact Factor is not positioned at the core of this construct, but at its periphery, and should thus be used with caution.


Subject(s)
Bibliometrics , Journal Impact Factor , Periodicals as Topic/standards , Publishing/standards , Access to Information , Databases, Factual , Information Dissemination , Periodicals as Topic/trends , Principal Component Analysis , Publishing/trends
2.
PLoS One ; 4(3): e4803, 2009.
Article in English | MEDLINE | ID: mdl-19277205

ABSTRACT

BACKGROUND: Intricate maps of science have been created from citation data to visualize the structure of scientific activity. However, most scientific publications are now accessed online. Scholarly web portals record detailed log data at a scale that exceeds the number of all existing citations combined. Such log data is recorded immediately upon publication and keeps track of the sequences of user requests (clickstreams) that are issued by a variety of users across many different domains. Given these advantages of log datasets over citation data, we investigate whether they can produce high-resolution, more current maps of science. METHODOLOGY: Over the course of 2007 and 2008, we collected nearly 1 billion user interactions recorded by the scholarly web portals of some of the most significant publishers, aggregators and institutional consortia. The resulting reference data set covers a significant part of world-wide use of scholarly web portals in 2006, and provides a balanced coverage of the humanities, social sciences, and natural sciences. A journal clickstream model, i.e. a first-order Markov chain, was extracted from the sequences of user interactions in the logs. The clickstream model was validated by comparing it to the Getty Research Institute's Architecture and Art Thesaurus. The resulting model was visualized as a journal network that outlines the relationships between various scientific domains and clarifies the connection of the social sciences and humanities to the natural sciences. CONCLUSIONS: Maps of science resulting from large-scale clickstream data provide a detailed, contemporary view of scientific activity and correct the underrepresentation of the social sciences and humanities that is commonly found in citation data.


Subject(s)
Bibliometrics , Research/statistics & numerical data , Algorithms , Databases, Bibliographic/statistics & numerical data , Humanities/statistics & numerical data , Markov Chains , Models, Theoretical , Natural Science Disciplines/statistics & numerical data , Online Systems , Periodicals as Topic/statistics & numerical data , Social Sciences/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...