Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 259(Pt 2): 129305, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38262827

ABSTRACT

In this study, we aimed to develop a blended beverage enriched with curcumin. The curcumin was incorporated within a Pickering nanoemulsion that was stabilized with nanocellulose. The nanocellulose was synthesized from coconut milk waste residue using 38 %-42 % sulfuric acid (AC) and 5 and 10 min ultrasound (UL) separately and in combination (ACU). While combined treatment showed an increase in particle size with ultrasonication time, PDI was observed to decrease. ACU with 10 min ultrasonication was further used at 0.05 %, 0.1 %, 0.2 %, and 0.3 % for stabilization of curcumin enriched Pickering nanoemulsion. The curcumin in Pickering nanoemulsion fabricated with 0.1 % of nanocellulose with an average particle size and PDI value of 259.6 nm and 0.284, respectively was found to be the most stable as compared to other Pickering nanoemulsions at different pH levels and temperatures. RP-HPLC analysis revealed that with 0.1 % of nanocellulose, the Pickering nanoemulsion was most stable at 2 pH and 63 °C temperatures. The in vitro release of curcumin from Pickering nanoemulsion added to a blended beverage in intestinal phase was 51.58 %, which was higher than the stomach phase (38.19 %). The outcomes clearly showed Pickering nanoemulsion to be a promising carrier for curcumin encapsulation in beverage.


Subject(s)
Cocos , Curcumin , Ananas , Curcumin/chemistry , Emulsions/chemistry , Particle Size
2.
Int J Biol Macromol ; 255: 127932, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37949279

ABSTRACT

The effect of osmotic pressure treatment (OPT), heat moisture treatment (HMT), and their dual combination as HMT-OPT and OPT-HMT on functional and pasting properties, gel texture, crystallinity, thermal, morphological, and rheological properties, and in vitro digestibility of modified starches were investigated. HMT was done with 29 % moisture at 111 °C for 45 min while OPT was performed at 117 °C for 35 min with saturated sodium sulphate solution. All modifications increased amylose content, improved pasting stability, and reduced swelling power and solubility. Dual modifications caused higher morphological changes than single modified starches. HMT and OPT increased pasting temperature, setback and final viscosity while decreased peak viscosity and breakdown, whereas HMT-OPT and OPT-HMT reduced all pasting parameters except pasting temperature. 1047/1022 and 995/1022 ratios and relative crystallinity decreased. V-type polymorphs were formed, and gelatinization temperature range increased with lower gelatinization enthalpy. Starch gel elasticity, RS and SDS content were enhanced to a greater extent after HMT-OPT and OPT-HMT. HMT as a single and dual form with OPT showed prominent effect on pasting, thermal, crystalline, and rheological properties. Application of HMT, OPT and dual modified starches with improved functionalities may be targeted for suitable food applications such as noodles.


Subject(s)
Hot Temperature , Oryza , Oryza/chemistry , Osmotic Pressure , Starch/chemistry , Chemical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...