Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 17(18): 16111-8, 2009 Aug 31.
Article in English | MEDLINE | ID: mdl-19724611

ABSTRACT

Both ensemble and single-molecule measurements were performed to explore the fluorescence properties of Au nanoclusters (NCs). Photoinduced fluorescence enhancement was observed for ensemble NCs in solution, but photobleaching was found at ambient environments. At the single-molecule level, fluorescence blinking and single-step photobleaching were observed. Furthermore, their time-resolved fluorescence shows a single exponential decay with a lifetime of approximately 7 ns and is insensitive to changes in fluorescence intensity. The lifetime distribution is more homogeneous within ensemble Au NCs as compared to CdSe QDs. Therefore, Au NCs have potential applications as nontoxic fluorescent labels for lifetime-based imaging microscopy. However, their low quantum yields and poor photostability are disadvantageous factors, which require further improvement.


Subject(s)
Gold/chemistry , Luminescent Measurements/methods , Nanostructures/chemistry , Nanostructures/ultrastructure , Spectrometry, Fluorescence/methods
2.
Nanotechnology ; 20(41): 415201, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19755732

ABSTRACT

Fluorescence signals of quantum dots (QDs) influenced by different array structures of gold-coated silicon nanorods (SiNRs) were investigated via experimental observations and two-dimensional (2D) finite element method (FEM) simulations. On the densest gold-coated SiNRs array structure, the highest QD fluorescence quenching rates were observed and on the sparsest array structure, the highest QD fluorescence enhancement rates were observed. By developing a new technique which obtains the optical image of the array structures without losing information about the QD locations, we were able to further investigate how the QD fluorescence is influenced by spatially controlled array structures.


Subject(s)
Fluorescence , Nanotechnology/methods , Quantum Dots , Luminescent Measurements , Microscopy, Electron, Scanning
3.
Nanotechnology ; 20(16): 165301, 2009 Apr 22.
Article in English | MEDLINE | ID: mdl-19420566

ABSTRACT

We use nanoscale (20-300 nm in diameter) single crystalline gold (Au)-caps on silicon nanowires (NWs) grown by the vapor-liquid-solid (VLS) growth mechanism to enhance the fluorescence photoluminescence (PL) signals of highly dilute core/shell CdSeTe/ZnS quantum dots (QDs) in aqueous solution (10(-5) M). For NWs without Au-caps, as they appear, for example, after Au etching in aqua regia or buffered KI/I(2)-solution, essentially no fluorescence signal of the same diluted QDs could be observed. Fluorescence PL signals were measured using excitation with a laser wavelength of 633 nm. The signal enhancement by single crystalline, nanoscale Au-caps is discussed and interpreted based on finite element modeling (FEM).

4.
Phys Rev Lett ; 90(16): 166802, 2003 Apr 25.
Article in English | MEDLINE | ID: mdl-12731991

ABSTRACT

We propose to measure the superradiance effect by observing the current through a semiconductor double-dot system. An electron and a hole are injected separately into one of the quantum dots to form an exciton and then recombine radiatively. We find that the stationary current shows oscillatory behavior as one varies the interdot distance. The amplitude of oscillation can be increased by incorporating the system into a microcavity. Furthermore, the current is suppressed if the dot distance is small compared to the wavelength of the emitted photon. This photon trapping phenomenon generates the entangled state and may be used to control the emission of single photons at predetermined times.

SELECTION OF CITATIONS
SEARCH DETAIL
...