Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 16206, 2019 Nov 07.
Article in English | MEDLINE | ID: mdl-31700072

ABSTRACT

Large hydrate reservoirs in the Arctic regions could provide great potentials for recovery of methane and geological storage of CO2. In this study, injection of flue gas into permafrost gas hydrates reservoirs has been studied in order to evaluate its use in energy recovery and CO2 sequestration based on the premise that it could significantly lower costs relative to other technologies available today. We have carried out a series of real-time scale experiments under realistic conditions at temperatures between 261.2 and 284.2 K and at optimum pressures defined in our previous work, in order to characterize the kinetics of the process and evaluate efficiency. Results show that the kinetics of methane release from methane hydrate and CO2 extracted from flue gas strongly depend on hydrate reservoir temperatures. The experiment at 261.2 K yielded a capture of 81.9% CO2 present in the injected flue gas, and an increase in the CH4 concentration in the gas phase up to 60.7 mol%, 93.3 mol%, and 98.2 mol% at optimum pressures, after depressurizing the system to dissociate CH4 hydrate and after depressurizing the system to CO2 hydrate dissociation point, respectively. This is significantly better than the maximum efficiency reported in the literature for both CO2 sequestration and methane recovery using flue gas injection, demonstrating the economic feasibility of direct injection flue gas into hydrate reservoirs in permafrost for methane recovery and geological capture and storage of CO2. Finally, the thermal stability of stored CO2 was investigated by heating the system and it is concluded that presence of N2 in the injection gas provides another safety factor for the stored CO2 in case of temperature change.

2.
Sci Rep ; 8(1): 13534, 2018 Sep 10.
Article in English | MEDLINE | ID: mdl-30202065

ABSTRACT

Geological activity on icy planets and planetoids includes cryovolcanism. Until recently, most research on terrestrial permafrost has been engineering-oriented, and many related phenomena have received too little attention. Although fast processes in the Earth's cryosphere were known before, they have never been attributed to cryovolcanism. The discovery of a couple of tens of meters wide crater in the Yamal Peninsula aroused numerous hypotheses of its origin, including a meteorite impact or migration of deep gas as a result of global warming. However, the origin of the Yamal crater can be explained in terms of cryospheric processes. Thus, the Yamal crater appears to result from collapse of a large pingo, which formed within a thaw lake when it shoaled and dried out allowing a large talik (that is layer or body of unfrozen ground in a permafrost area) below it to freeze back. The pingo collapsed under cryogenic hydrostatic pressure built up in the closed system of the freezing talik. This happened before the freezing completed, when a core of wet ground remained unfrozen and stored a huge amount of carbon dioxide dissolved in pore water. This eventually reached gas-phase saturation, and the resulting overpressure came to exceed the lithospheric confining stress and the strength of the overlying ice. As the pingo exploded, the demarcation of the crater followed the cylindrical shape of the remnant talik core.

3.
Environ Sci Technol ; 52(7): 4324-4330, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29513532

ABSTRACT

Injection of flue gas or CO2-N2 mixtures into gas hydrate reservoirs has been considered as a promising option for geological storage of CO2. However, the thermodynamic process in which the CO2 present in flue gas or a CO2-N2 mixture is captured as hydrate has not been well understood. In this work, a series of experiments were conducted to investigate the dependence of CO2 capture efficiency on reservoir conditions. The CO2 capture efficiency was investigated at different injection pressures from 2.6 to 23.8 MPa and hydrate reservoir temperatures from 273.2 to 283.2 K in the presence of two different saturations of methane hydrate. The results showed that more than 60% of the CO2 in the flue gas was captured and stored as CO2 hydrate or CO2-mixed hydrates, while methane-rich gas was produced. The efficiency of CO2 capture depends on the reservoir conditions including temperature, pressure, and hydrate saturation. For a certain reservoir temperature, there is an optimum reservoir pressure at which the maximum amount of CO2 can be captured from the injected flue gas or CO2-N2 mixtures. This finding suggests that it is essential to control the injection pressure to enhance CO2 capture efficiency by flue gas or CO2-N2 mixtures injection.


Subject(s)
Carbon Dioxide , Water , Methane , Oil and Gas Fields , Thermodynamics
4.
Phys Chem Chem Phys ; 13(39): 17449-52, 2011 Oct 21.
Article in English | MEDLINE | ID: mdl-21915423

ABSTRACT

Dissociation processes of methane hydrate synthesized with glass beads were investigated using powder X-ray diffraction and calorimetry. Methane hydrate formed with coarse glass beads dissociated quickly at 150-200 K; in this temperature range methane hydrate dissociates at atmospheric pressure. In contrast, methane hydrate formed with glass beads less than a few microns in size showed very high stability up to just below the melting point of ice, even though this temperature is well outside the zone of thermodynamic stability of the hydrate. The rate-determining steps for methane hydrate dissociation within pores are also discussed. The experimental results suggest that methane hydrate existing naturally within the pores of fine particles such as mud at low temperatures would be significantly more stable than expected thermodynamically.


Subject(s)
Methane/chemistry , Water/chemistry , Calorimetry , Glass/chemistry , Methane/chemical synthesis , Porosity , Powder Diffraction , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...